Abstract:Harmful fine-tuning attack poses a serious threat to the online fine-tuning service. Vaccine, a recent alignment-stage defense, applies uniform perturbation to all layers of embedding to make the model robust to the simulated embedding drift. However, applying layer-wise uniform perturbation may lead to excess perturbations for some particular safety-irrelevant layers, resulting in defense performance degradation and unnecessary memory consumption. To address this limitation, we propose Targeted Vaccine (T-Vaccine), a memory-efficient safety alignment method that applies perturbation to only selected layers of the model. T-Vaccine follows two core steps: First, it uses gradient norm as a statistical metric to identify the safety-critical layers. Second, instead of applying uniform perturbation across all layers, T-Vaccine only applies perturbation to the safety-critical layers while keeping other layers frozen during training. Results show that T-Vaccine outperforms Vaccine in terms of both defense effectiveness and resource efficiency. Comparison with other defense baselines, e.g., RepNoise and TAR also demonstrate the superiority of T-Vaccine. Notably, T-Vaccine is the first defense that can address harmful fine-tuning issues for a 7B pre-trained models trained on consumer GPUs with limited memory (e.g., RTX 4090). Our code is available at https://github.com/Lslland/T-Vaccine.
Abstract:The stable periodic patterns present in time series data serve as the foundation for conducting long-horizon forecasts. In this paper, we pioneer the exploration of explicitly modeling this periodicity to enhance the performance of models in long-term time series forecasting (LTSF) tasks. Specifically, we introduce the Residual Cycle Forecasting (RCF) technique, which utilizes learnable recurrent cycles to model the inherent periodic patterns within sequences, and then performs predictions on the residual components of the modeled cycles. Combining RCF with a Linear layer or a shallow MLP forms the simple yet powerful method proposed in this paper, called CycleNet. CycleNet achieves state-of-the-art prediction accuracy in multiple domains including electricity, weather, and energy, while offering significant efficiency advantages by reducing over 90% of the required parameter quantity. Furthermore, as a novel plug-and-play technique, the RCF can also significantly improve the prediction accuracy of existing models, including PatchTST and iTransformer. The source code is available at: https://github.com/ACAT-SCUT/CycleNet.
Abstract:This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF), designed to address the challenges of modeling complex temporal dependencies over extended horizons with minimal computational resources. At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data. This technique involves downsampling the original sequences to focus on cross-period trend prediction, effectively extracting periodic features while minimizing the model's complexity and parameter count. Based on this technique, the SparseTSF model uses fewer than 1k parameters to achieve competitive or superior performance compared to state-of-the-art models. Furthermore, SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data. The code is available at: https://github.com/lss-1138/SparseTSF.
Abstract:Achieving nuanced and accurate emulation of human voice has been a longstanding goal in artificial intelligence. Although significant progress has been made in recent years, the mainstream of speech synthesis models still relies on supervised speaker modeling and explicit reference utterances. However, there are many aspects of human voice, such as emotion, intonation, and speaking style, for which it is hard to obtain accurate labels. In this paper, we propose VoxGenesis, a novel unsupervised speech synthesis framework that can discover a latent speaker manifold and meaningful voice editing directions without supervision. VoxGenesis is conceptually simple. Instead of mapping speech features to waveforms deterministically, VoxGenesis transforms a Gaussian distribution into speech distributions conditioned and aligned by semantic tokens. This forces the model to learn a speaker distribution disentangled from the semantic content. During the inference, sampling from the Gaussian distribution enables the creation of novel speakers with distinct characteristics. More importantly, the exploration of latent space uncovers human-interpretable directions associated with specific speaker characteristics such as gender attributes, pitch, tone, and emotion, allowing for voice editing by manipulating the latent codes along these identified directions. We conduct extensive experiments to evaluate the proposed VoxGenesis using both subjective and objective metrics, finding that it produces significantly more diverse and realistic speakers with distinct characteristics than the previous approaches. We also show that latent space manipulation produces consistent and human-identifiable effects that are not detrimental to the speech quality, which was not possible with previous approaches. Audio samples of VoxGenesis can be found at: \url{https://bit.ly/VoxGenesis}.
Abstract:Contrastive self-supervised learning (CSL) for speaker verification (SV) has drawn increasing interest recently due to its ability to exploit unlabeled data. Performing data augmentation on raw waveforms, such as adding noise or reverberation, plays a pivotal role in achieving promising results in SV. Data augmentation, however, demands meticulous calibration to ensure intact speaker-specific information, which is difficult to achieve without speaker labels. To address this issue, we introduce a novel framework by incorporating clean and augmented segments into the contrastive training pipeline. The clean segments are repurposed to pair with noisy segments to form additional positive and negative pairs. Moreover, the contrastive loss is weighted to increase the difference between the clean and augmented embeddings of different speakers. Experimental results on Voxceleb1 suggest that the proposed framework can achieve a remarkable 19% improvement over the conventional methods, and it surpasses many existing state-of-the-art techniques.
Abstract:RNN-based methods have faced challenges in the Long-term Time Series Forecasting (LTSF) domain when dealing with excessively long look-back windows and forecast horizons. Consequently, the dominance in this domain has shifted towards Transformer, MLP, and CNN approaches. The substantial number of recurrent iterations are the fundamental reasons behind the limitations of RNNs in LTSF. To address these issues, we propose two novel strategies to reduce the number of iterations in RNNs for LTSF tasks: Segment-wise Iterations and Parallel Multi-step Forecasting (PMF). RNNs that combine these strategies, namely SegRNN, significantly reduce the required recurrent iterations for LTSF, resulting in notable improvements in forecast accuracy and inference speed. Extensive experiments demonstrate that SegRNN not only outperforms SOTA Transformer-based models but also reduces runtime and memory usage by more than 78%. These achievements provide strong evidence that RNNs continue to excel in LTSF tasks and encourage further exploration of this domain with more RNN-based approaches. The source code is coming soon.
Abstract:Recently, Transformer-based models have shown remarkable performance in long-term time series forecasting (LTSF) tasks due to their ability to model long-term dependencies. However, the validity of Transformers for LTSF tasks remains debatable, particularly since recent work has shown that simple linear models can outperform numerous Transformer-based approaches. This suggests that there are limitations to the application of Transformer in LTSF. Therefore, this paper investigates three key issues when applying Transformer to LTSF: temporal continuity, information density, and multi-channel relationships. Accordingly, we propose three innovative solutions, including Placeholder Enhancement Technique (PET), Long Sub-sequence Division (LSD), and Multi-channel Separation and Interaction (MSI), which together form a novel model called PETformer. These three key designs introduce prior biases suitable for LTSF tasks. Extensive experiments have demonstrated that PETformer achieves state-of-the-art (SOTA) performance on eight commonly used public datasets for LTSF, outperforming all other models currently available. This demonstrates that Transformer still possesses powerful capabilities in LTSF.
Abstract:Self-supervised learning (SSL) speech models such as wav2vec and HuBERT have demonstrated state-of-the-art performance on automatic speech recognition (ASR) and proved to be extremely useful in low label-resource settings. However, the success of SSL models has yet to transfer to utterance-level tasks such as speaker, emotion, and language recognition, which still require supervised fine-tuning of the SSL models to obtain good performance. We argue that the problem is caused by the lack of disentangled representations and an utterance-level learning objective for these tasks. Inspired by how HuBERT uses clustering to discover hidden acoustic units, we formulate a factor analysis (FA) model that uses the discovered hidden acoustic units to align the SSL features. The underlying utterance-level representations are disentangled from the content of speech using probabilistic inference on the aligned features. Furthermore, the variational lower bound derived from the FA model provides an utterance-level objective, allowing error gradients to be backpropagated to the Transformer layers to learn highly discriminative acoustic units. When used in conjunction with HuBERT's masked prediction training, our models outperform the current best model, WavLM, on all utterance-level non-semantic tasks on the SUPERB benchmark with only 20% of labeled data.
Abstract:Personalized federated learning, as a variant of federated learning, trains customized models for clients using their heterogeneously distributed data. However, it is still inconclusive about how to design personalized models with better representation of shared global knowledge and personalized pattern. To bridge the gap, we in this paper explore personalized models with low-rank and sparse decomposition. Specifically, we employ proper regularization to extract a low-rank global knowledge representation (GKR), so as to distill global knowledge into a compact representation. Subsequently, we employ a sparse component over the obtained GKR to fuse the personalized pattern into the global knowledge. As a solution, we propose a two-stage proximal-based algorithm named \textbf{Fed}erated learning with mixed \textbf{S}parse and \textbf{L}ow-\textbf{R}ank representation (FedSLR) to efficiently search for the mixed models. Theoretically, under proper assumptions, we show that the GKR trained by FedSLR can at least sub-linearly converge to a stationary point of the regularized problem, and that the sparse component being fused can converge to its stationary point under proper settings. Extensive experiments also demonstrate the superior empirical performance of FedSLR. Moreover, FedSLR reduces the number of parameters, and lowers the down-link communication complexity, which are all desirable for federated learning algorithms. Source code is available in \url{https://github.com/huangtiansheng/fedslr}.
Abstract:Federated learning (FL) is vulnerable to heterogeneously distributed data, since a common global model in FL may not adapt to the heterogeneous data distribution of each user. To counter this issue, personalized FL (PFL) was proposed to produce dedicated local models for each individual user. However, PFL is far from its maturity, because existing PFL solutions either demonstrate unsatisfactory generalization towards different model architectures or cost enormous extra computation and memory. In this work, we propose federated learning with personalized sparse mask (FedSpa), a novel PFL scheme that employs personalized sparse masks to customize sparse local models on the edge. Instead of training an intact (or dense) PFL model, FedSpa only maintains a fixed number of active parameters throughout training (aka sparse-to-sparse training), which enables users' models to achieve personalization with cheap communication, computation, and memory cost. We theoretically show that the iterates obtained by FedSpa converge to the local minimizer of the formulated SPFL problem at rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$. Comprehensive experiments demonstrate that FedSpa significantly saves communication and computation costs, while simultaneously achieves higher model accuracy and faster convergence speed against several state-of-the-art PFL methods.