Abstract:Recent advancements in Large Multimodal Models (LMMs) have made significant progress in the field of single-image visual question answering. However, these models face substantial challenges when tasked with queries that span extensive collections of images, similar to real-world scenarios like searching through large photo albums, finding specific information across the internet, or monitoring environmental changes through satellite imagery. This paper explores the task of Multi-Image Visual Question Answering (MIQA): given a large set of images and a natural language query, the task is to generate a relevant and grounded response. We propose a new public benchmark, dubbed "Visual Haystacks (VHs)," specifically designed to evaluate LMMs' capabilities in visual retrieval and reasoning over sets of unrelated images, where we perform comprehensive evaluations demonstrating that even robust closed-source models struggle significantly. Towards addressing these shortcomings, we introduce MIRAGE (Multi-Image Retrieval Augmented Generation), a novel retrieval/QA framework tailored for LMMs that confronts the challenges of MIQA with marked efficiency and accuracy improvements over baseline methods. Our evaluation shows that MIRAGE surpasses closed-source GPT-4o models by up to 11% on the VHs benchmark and offers up to 3.4x improvements in efficiency over text-focused multi-stage approaches.
Abstract:We study how to report few-shot imitation (FSI) policies' behavior errors in novel environments, a novel task named adaptable error detection (AED). The potential to cause serious damage to surrounding areas limits the application of FSI policies in real-world scenarios. Thus, a robust system is necessary to notify operators when FSI policies are inconsistent with the intent of demonstrations. We develop a cross-domain benchmark for the challenging AED task, consisting of 329 base and 158 novel environments. This task introduces three challenges, including (1) detecting behavior errors in novel environments, (2) behavior errors occurring without revealing notable changes, and (3) lacking complete temporal information of the rollout due to the necessity of online detection. To address these challenges, we propose Pattern Observer (PrObe) to parse discernible patterns in the policy feature representations of normal or error states, whose effectiveness is verified in the proposed benchmark. Through our comprehensive evaluation, PrObe consistently surpasses strong baselines and demonstrates a robust capability to identify errors arising from a wide range of FSI policies. Moreover, we conduct comprehensive ablations and experiments (error correction, demonstration quality, etc.) to validate the practicality of our proposed task and methodology.
Abstract:Current open-source Large Multimodal Models (LMMs) excel at tasks such as open-vocabulary language grounding and segmentation but can suffer under false premises when queries imply the existence of something that is not actually present in the image. We observe that existing methods that fine-tune an LMM to segment images significantly degrade their ability to reliably determine ("see") if an object is present and to interact naturally with humans ("say"), a form of catastrophic forgetting. In this work, we propose a cascading and joint training approach for LMMs to solve this task, avoiding catastrophic forgetting of previous skills. Our resulting model can "see" by detecting whether objects are present in an image, "say" by telling the user if they are not, proposing alternative queries or correcting semantic errors in the query, and finally "segment" by outputting the mask of the desired objects if they exist. Additionally, we introduce a novel False Premise Correction benchmark dataset, an extension of existing RefCOCO(+/g) referring segmentation datasets (which we call FP-RefCOCO(+/g)). The results show that our method not only detects false premises up to 55% better than existing approaches, but under false premise conditions produces relative cIOU improvements of more than 31% over baselines, and produces natural language feedback judged helpful up to 67% of the time.
Abstract:Text-to-image generation has witnessed significant progress with the advent of diffusion models. Despite the ability to generate photorealistic images, current text-to-image diffusion models still often struggle to accurately interpret and follow complex input text prompts. In contrast to existing models that aim to generate images only with their best effort, we introduce Self-correcting LLM-controlled Diffusion (SLD). SLD is a framework that generates an image from the input prompt, assesses its alignment with the prompt, and performs self-corrections on the inaccuracies in the generated image. Steered by an LLM controller, SLD turns text-to-image generation into an iterative closed-loop process, ensuring correctness in the resulting image. SLD is not only training-free but can also be seamlessly integrated with diffusion models behind API access, such as DALL-E 3, to further boost the performance of state-of-the-art diffusion models. Experimental results show that our approach can rectify a majority of incorrect generations, particularly in generative numeracy, attribute binding, and spatial relationships. Furthermore, by simply adjusting the instructions to the LLM, SLD can perform image editing tasks, bridging the gap between text-to-image generation and image editing pipelines. We will make our code available for future research and applications.
Abstract:In the field of domain adaptation (DA) on 3D object detection, most of the work is dedicated to unsupervised domain adaptation (UDA). Yet, without any target annotations, the performance gap between the UDA approaches and the fully-supervised approach is still noticeable, which is impractical for real-world applications. On the other hand, weakly-supervised domain adaptation (WDA) is an underexplored yet practical task that only requires few labeling effort on the target domain. To improve the DA performance in a cost-effective way, we propose a general weak labels guided self-training framework, WLST, designed for WDA on 3D object detection. By incorporating autolabeler, which can generate 3D pseudo labels from 2D bounding boxes, into the existing self-training pipeline, our method is able to generate more robust and consistent pseudo labels that would benefit the training process on the target domain. Extensive experiments demonstrate the effectiveness, robustness, and detector-agnosticism of our WLST framework. Notably, it outperforms previous state-of-the-art methods on all evaluation tasks.
Abstract:Obtaining large-scale labeled object detection dataset can be costly and time-consuming, as it involves annotating images with bounding boxes and class labels. Thus, some specialized active learning methods have been proposed to reduce the cost by selecting either coarse-grained samples or fine-grained instances from unlabeled data for labeling. However, the former approaches suffer from redundant labeling, while the latter methods generally lead to training instability and sampling bias. To address these challenges, we propose a novel approach called Multi-scale Region-based Active Learning (MuRAL) for object detection. MuRAL identifies informative regions of various scales to reduce annotation costs for well-learned objects and improve training performance. The informative region score is designed to consider both the predicted confidence of instances and the distribution of each object category, enabling our method to focus more on difficult-to-detect classes. Moreover, MuRAL employs a scale-aware selection strategy that ensures diverse regions are selected from different scales for labeling and downstream finetuning, which enhances training stability. Our proposed method surpasses all existing coarse-grained and fine-grained baselines on Cityscapes and MS COCO datasets, and demonstrates significant improvement in difficult category performance.
Abstract:Nowadays, the need for user editing in a 3D scene has rapidly increased due to the development of AR and VR technology. However, the existing 3D scene completion task (and datasets) cannot suit the need because the missing regions in scenes are generated by the sensor limitation or object occlusion. Thus, we present a novel task named free-form 3D scene inpainting. Unlike scenes in previous 3D completion datasets preserving most of the main structures and hints of detailed shapes around missing regions, the proposed inpainting dataset, FF-Matterport, contains large and diverse missing regions formed by our free-form 3D mask generation algorithm that can mimic human drawing trajectories in 3D space. Moreover, prior 3D completion methods cannot perform well on this challenging yet practical task, simply interpolating nearby geometry and color context. Thus, a tailored dual-stream GAN method is proposed. First, our dual-stream generator, fusing both geometry and color information, produces distinct semantic boundaries and solves the interpolation issue. To further enhance the details, our lightweight dual-stream discriminator regularizes the geometry and color edges of the predicted scenes to be realistic and sharp. We conducted experiments with the proposed FF-Matterport dataset. Qualitative and quantitative results validate the superiority of our approach over existing scene completion methods and the efficacy of all proposed components.
Abstract:To achieve accurate 3D object detection at a low cost for autonomous driving, many multi-camera methods have been proposed and solved the occlusion problem of monocular approaches. However, due to the lack of accurate estimated depth, existing multi-camera methods often generate multiple bounding boxes along a ray of depth direction for difficult small objects such as pedestrians, resulting in an extremely low recall. Furthermore, directly applying depth prediction modules to existing multi-camera methods, generally composed of large network architectures, cannot meet the real-time requirements of self-driving applications. To address these issues, we propose Cross-view and Depth-guided Transformers for 3D Object Detection, CrossDTR. First, our lightweight depth predictor is designed to produce precise object-wise sparse depth maps and low-dimensional depth embeddings without extra depth datasets during supervision. Second, a cross-view depth-guided transformer is developed to fuse the depth embeddings as well as image features from cameras of different views and generate 3D bounding boxes. Extensive experiments demonstrated that our method hugely surpassed existing multi-camera methods by 10 percent in pedestrian detection and about 3 percent in overall mAP and NDS metrics. Also, computational analyses showed that our method is 5 times faster than prior approaches. Our codes will be made publicly available at https://github.com/sty61010/CrossDTR.
Abstract:While recent large-scale video-language pre-training made great progress in video question answering, the design of spatial modeling of video-language models is less fine-grained than that of image-language models; existing practices of temporal modeling also suffer from weak and noisy alignment between modalities. To learn fine-grained visual understanding, we decouple spatial-temporal modeling and propose a hybrid pipeline, Decoupled Spatial-Temporal Encoders, integrating an image- and a video-language encoder. The former encodes spatial semantics from larger but sparsely sampled frames independently of time, while the latter models temporal dynamics at lower spatial but higher temporal resolution. To help the video-language model learn temporal relations for video QA, we propose a novel pre-training objective, Temporal Referring Modeling, which requires the model to identify temporal positions of events in video sequences. Extensive experiments demonstrate that our model outperforms previous work pre-trained on orders of magnitude larger datasets.
Abstract:Fair Active Learning (FAL) utilized active learning techniques to achieve high model performance with limited data and to reach fairness between sensitive groups (e.g., genders). However, the impact of the adversarial attack, which is vital for various safety-critical machine learning applications, is not yet addressed in FAL. Observing this, we introduce a novel task, Fair Robust Active Learning (FRAL), integrating conventional FAL and adversarial robustness. FRAL requires ML models to leverage active learning techniques to jointly achieve equalized performance on benign data and equalized robustness against adversarial attacks between groups. In this new task, previous FAL methods generally face the problem of unbearable computational burden and ineffectiveness. Therefore, we develop a simple yet effective FRAL strategy by Joint INconsistency (JIN). To efficiently find samples that can boost the performance and robustness of disadvantaged groups for labeling, our method exploits the prediction inconsistency between benign and adversarial samples as well as between standard and robust models. Extensive experiments under diverse datasets and sensitive groups demonstrate that our method not only achieves fairer performance on benign samples but also obtains fairer robustness under white-box PGD attacks compared with existing active learning and FAL baselines. We are optimistic that FRAL would pave a new path for developing safe and robust ML research and applications such as facial attribute recognition in biometrics systems.