Abstract:This paper reviews published research in the field of computer-aided colorization technology. We argue that the colorization task originates from computer graphics, prospers by introducing computer vision, and tends to the fusion of vision and graphics, so we put forward our taxonomy and organize the whole paper chronologically. We extend the existing reconstruction-based colorization evaluation techniques, considering that aesthetic assessment of colored images should be introduced to ensure that colorization satisfies human visual-related requirements and emotions more closely. We perform the colorization aesthetic assessment on seven representative unconditional colorization models and discuss the difference between our assessment and the existing reconstruction-based metrics. Finally, this paper identifies unresolved issues and proposes fruitful areas for future research and development. Access to the project associated with this survey can be obtained at https://github.com/DanielCho-HK/Colorization.
Abstract:Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.
Abstract:Despite the remarkable process of talking-head-based avatar-creating solutions, directly generating anchor-style videos with full-body motions remains challenging. In this study, we propose Make-Your-Anchor, a novel system necessitating only a one-minute video clip of an individual for training, subsequently enabling the automatic generation of anchor-style videos with precise torso and hand movements. Specifically, we finetune a proposed structure-guided diffusion model on input video to render 3D mesh conditions into human appearances. We adopt a two-stage training strategy for the diffusion model, effectively binding movements with specific appearances. To produce arbitrary long temporal video, we extend the 2D U-Net in the frame-wise diffusion model to a 3D style without additional training cost, and a simple yet effective batch-overlapped temporal denoising module is proposed to bypass the constraints on video length during inference. Finally, a novel identity-specific face enhancement module is introduced to improve the visual quality of facial regions in the output videos. Comparative experiments demonstrate the effectiveness and superiority of the system in terms of visual quality, temporal coherence, and identity preservation, outperforming SOTA diffusion/non-diffusion methods. Project page: \url{https://github.com/ICTMCG/Make-Your-Anchor}.
Abstract:The harmonious integration of music with dance movements is pivotal in vividly conveying the artistic essence of dance. This alignment also significantly elevates the immersive quality of gaming experiences and animation productions. While there has been remarkable advancement in creating high-fidelity music from textual descriptions, current methodologies mainly concentrate on modulating overarching characteristics such as genre and emotional tone. They often overlook the nuanced management of temporal rhythm, which is indispensable in crafting music for dance, since it intricately aligns the musical beats with the dancers' movements. Recognizing this gap, we propose an encoder-based textual inversion technique for augmenting text-to-music models with visual control, facilitating personalized music generation. Specifically, we develop dual-path rhythm-genre inversion to effectively integrate the rhythm and genre of a dance motion sequence into the textual space of a text-to-music model. Contrary to the classical textual inversion method, which directly updates text embeddings to reconstruct a single target object, our approach utilizes separate rhythm and genre encoders to obtain text embeddings for two pseudo-words, adapting to the varying rhythms and genres. To achieve a more accurate evaluation, we propose improved evaluation metrics for rhythm alignment. We demonstrate that our approach outperforms state-of-the-art methods across multiple evaluation metrics. Furthermore, our method seamlessly adapts to in-the-wild data and effectively integrates with the inherent text-guided generation capability of the pre-trained model. Samples are available at \url{https://youtu.be/D7XDwtH1YwE}.
Abstract:If the video has long been mentioned as a widespread visualization form, the animation sequence in the video is mentioned as storytelling for people. Producing an animation requires intensive human labor from skilled professional artists to obtain plausible animation in both content and motion direction, incredibly for animations with complex content, multiple moving objects, and dense movement. This paper presents an interactive framework to generate new sequences according to the users' preference on the starting frame. The critical contrast of our approach versus prior work and existing commercial applications is that novel sequences with arbitrary starting frame are produced by our system with a consistent degree in both content and motion direction. To achieve this effectively, we first learn the feature correlation on the frameset of the given video through a proposed network called RSFNet. Then, we develop a novel path-finding algorithm, SDPF, which formulates the knowledge of motion directions of the source video to estimate the smooth and plausible sequences. The extensive experiments show that our framework can produce new animations on the cartoon and natural scenes and advance prior works and commercial applications to enable users to obtain more predictable results.
Abstract:Video holds significance in computer graphics applications. Because of the heterogeneous of digital devices, retargeting videos becomes an essential function to enhance user viewing experience in such applications. In the research of video retargeting, preserving the relevant visual content in videos, avoiding flicking, and processing time are the vital challenges. Extending image retargeting techniques to the video domain is challenging due to the high running time. Prior work of video retargeting mainly utilizes time-consuming preprocessing to analyze frames. Plus, being tolerant of different video content, avoiding important objects from shrinking, and the ability to play with arbitrary ratios are the limitations that need to be resolved in these systems requiring investigation. In this paper, we present an end-to-end RETVI method to retarget videos to arbitrary aspect ratios. We eliminate the computational bottleneck in the conventional approaches by designing RETVI with two modules, content feature analyzer (CFA) and adaptive deforming estimator (ADE). The extensive experiments and evaluations show that our system outperforms previous work in quality and running time. Visit our project website for more results at http://graphics.csie.ncku.edu.tw/RETVI.
Abstract:Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes like material, style, layout, etc. remains a challenge, leading to a lack of disentanglement and editability. To address this, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low- to high-frequency information, providing a new perspective on representing, generating, and editing images. We develop Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called ProSpect. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer stronger disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image/text-guided material/style/layout transfer/editing, achieving previously unattainable results with a single image input without fine-tuning the diffusion models.
Abstract:It is a time-consuming and tedious work for manually colorizing anime line drawing images, which is an essential stage in cartoon animation creation pipeline. Reference-based line drawing colorization is a challenging task that relies on the precise cross-domain long-range dependency modelling between the line drawing and reference image. Existing learning methods still utilize generative adversarial networks (GANs) as one key module of their model architecture. In this paper, we propose a novel method called AnimeDiffusion using diffusion models that performs anime face line drawing colorization automatically. To the best of our knowledge, this is the first diffusion model tailored for anime content creation. In order to solve the huge training consumption problem of diffusion models, we design a hybrid training strategy, first pre-training a diffusion model with classifier-free guidance and then fine-tuning it with image reconstruction guidance. We find that with a few iterations of fine-tuning, the model shows wonderful colorization performance, as illustrated in Fig. 1. For training AnimeDiffusion, we conduct an anime face line drawing colorization benchmark dataset, which contains 31696 training data and 579 testing data. We hope this dataset can fill the gap of no available high resolution anime face dataset for colorization method evaluation. Through multiple quantitative metrics evaluated on our dataset and a user study, we demonstrate AnimeDiffusion outperforms state-of-the-art GANs-based models for anime face line drawing colorization. We also collaborate with professional artists to test and apply our AnimeDiffusion for their creation work. We release our code on https://github.com/xq-meng/AnimeDiffusion.
Abstract:Image manipulation under the guidance of textual descriptions has recently received a broad range of attention. In this study, we focus on the regional editing of images with the guidance of given text prompts. Different from current mask-based image editing methods, we propose a novel region-aware diffusion model (RDM) for entity-level image editing, which could automatically locate the region of interest and replace it following given text prompts. To strike a balance between image fidelity and inference speed, we design the intensive diffusion pipeline by combing latent space diffusion and enhanced directional guidance. In addition, to preserve image content in non-edited regions, we introduce regional-aware entity editing to modify the region of interest and preserve the out-of-interest region. We validate the proposed RDM beyond the baseline methods through extensive qualitative and quantitative experiments. The results show that RDM outperforms the previous approaches in terms of visual quality, overall harmonization, non-editing region content preservation, and text-image semantic consistency. The codes are available at https://github.com/haha-lisa/RDM-Region-Aware-Diffusion-Model.
Abstract:In this work, we tackle the challenging problem of arbitrary image style transfer using a novel style feature representation learning method. A suitable style representation, as a key component in image stylization tasks, is essential to achieve satisfactory results. Existing deep neural network based approaches achieve reasonable results with the guidance from second-order statistics such as Gram matrix of content features. However, they do not leverage sufficient style information, which results in artifacts such as local distortions and style inconsistency. To address these issues, we propose to learn style representation directly from image features instead of their second-order statistics, by analyzing the similarities and differences between multiple styles and considering the style distribution. Specifically, we present Contrastive Arbitrary Style Transfer (CAST), which is a new style representation learning and style transfer method via contrastive learning. Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer. We conduct qualitative and quantitative evaluations comprehensively to demonstrate that our approach achieves significantly better results compared to those obtained via state-of-the-art methods. Code and models are available at https://github.com/zyxElsa/CAST_pytorch