Abstract:This paper addresses the challenges in learning-based monocular positioning by proposing VKFPos, a novel approach that integrates Absolute Pose Regression (APR) and Relative Pose Regression (RPR) via an Extended Kalman Filter (EKF) within a variational Bayesian inference framework. Our method shows that the essential posterior probability of the monocular positioning problem can be decomposed into APR and RPR components. This decomposition is embedded in the deep learning model by predicting covariances in both APR and RPR branches, allowing them to account for associated uncertainties. These covariances enhance the loss functions and facilitate EKF integration. Experimental evaluations on both indoor and outdoor datasets show that the single-shot APR branch achieves accuracy on par with state-of-the-art methods. Furthermore, for temporal positioning, where consecutive images allow for RPR and EKF integration, VKFPos outperforms temporal APR and model-based integration methods, achieving superior accuracy.
Abstract:Video holds significance in computer graphics applications. Because of the heterogeneous of digital devices, retargeting videos becomes an essential function to enhance user viewing experience in such applications. In the research of video retargeting, preserving the relevant visual content in videos, avoiding flicking, and processing time are the vital challenges. Extending image retargeting techniques to the video domain is challenging due to the high running time. Prior work of video retargeting mainly utilizes time-consuming preprocessing to analyze frames. Plus, being tolerant of different video content, avoiding important objects from shrinking, and the ability to play with arbitrary ratios are the limitations that need to be resolved in these systems requiring investigation. In this paper, we present an end-to-end RETVI method to retarget videos to arbitrary aspect ratios. We eliminate the computational bottleneck in the conventional approaches by designing RETVI with two modules, content feature analyzer (CFA) and adaptive deforming estimator (ADE). The extensive experiments and evaluations show that our system outperforms previous work in quality and running time. Visit our project website for more results at http://graphics.csie.ncku.edu.tw/RETVI.