Abstract:If the video has long been mentioned as a widespread visualization form, the animation sequence in the video is mentioned as storytelling for people. Producing an animation requires intensive human labor from skilled professional artists to obtain plausible animation in both content and motion direction, incredibly for animations with complex content, multiple moving objects, and dense movement. This paper presents an interactive framework to generate new sequences according to the users' preference on the starting frame. The critical contrast of our approach versus prior work and existing commercial applications is that novel sequences with arbitrary starting frame are produced by our system with a consistent degree in both content and motion direction. To achieve this effectively, we first learn the feature correlation on the frameset of the given video through a proposed network called RSFNet. Then, we develop a novel path-finding algorithm, SDPF, which formulates the knowledge of motion directions of the source video to estimate the smooth and plausible sequences. The extensive experiments show that our framework can produce new animations on the cartoon and natural scenes and advance prior works and commercial applications to enable users to obtain more predictable results.
Abstract:Video holds significance in computer graphics applications. Because of the heterogeneous of digital devices, retargeting videos becomes an essential function to enhance user viewing experience in such applications. In the research of video retargeting, preserving the relevant visual content in videos, avoiding flicking, and processing time are the vital challenges. Extending image retargeting techniques to the video domain is challenging due to the high running time. Prior work of video retargeting mainly utilizes time-consuming preprocessing to analyze frames. Plus, being tolerant of different video content, avoiding important objects from shrinking, and the ability to play with arbitrary ratios are the limitations that need to be resolved in these systems requiring investigation. In this paper, we present an end-to-end RETVI method to retarget videos to arbitrary aspect ratios. We eliminate the computational bottleneck in the conventional approaches by designing RETVI with two modules, content feature analyzer (CFA) and adaptive deforming estimator (ADE). The extensive experiments and evaluations show that our system outperforms previous work in quality and running time. Visit our project website for more results at http://graphics.csie.ncku.edu.tw/RETVI.