Abstract:This paper reviews published research in the field of computer-aided colorization technology. We argue that the colorization task originates from computer graphics, prospers by introducing computer vision, and tends to the fusion of vision and graphics, so we put forward our taxonomy and organize the whole paper chronologically. We extend the existing reconstruction-based colorization evaluation techniques, considering that aesthetic assessment of colored images should be introduced to ensure that colorization satisfies human visual-related requirements and emotions more closely. We perform the colorization aesthetic assessment on seven representative unconditional colorization models and discuss the difference between our assessment and the existing reconstruction-based metrics. Finally, this paper identifies unresolved issues and proposes fruitful areas for future research and development. Access to the project associated with this survey can be obtained at https://github.com/DanielCho-HK/Colorization.
Abstract:It is a time-consuming and tedious work for manually colorizing anime line drawing images, which is an essential stage in cartoon animation creation pipeline. Reference-based line drawing colorization is a challenging task that relies on the precise cross-domain long-range dependency modelling between the line drawing and reference image. Existing learning methods still utilize generative adversarial networks (GANs) as one key module of their model architecture. In this paper, we propose a novel method called AnimeDiffusion using diffusion models that performs anime face line drawing colorization automatically. To the best of our knowledge, this is the first diffusion model tailored for anime content creation. In order to solve the huge training consumption problem of diffusion models, we design a hybrid training strategy, first pre-training a diffusion model with classifier-free guidance and then fine-tuning it with image reconstruction guidance. We find that with a few iterations of fine-tuning, the model shows wonderful colorization performance, as illustrated in Fig. 1. For training AnimeDiffusion, we conduct an anime face line drawing colorization benchmark dataset, which contains 31696 training data and 579 testing data. We hope this dataset can fill the gap of no available high resolution anime face dataset for colorization method evaluation. Through multiple quantitative metrics evaluated on our dataset and a user study, we demonstrate AnimeDiffusion outperforms state-of-the-art GANs-based models for anime face line drawing colorization. We also collaborate with professional artists to test and apply our AnimeDiffusion for their creation work. We release our code on https://github.com/xq-meng/AnimeDiffusion.