Abstract:Scalable annotation approaches are crucial for constructing extensive 3D-text datasets, facilitating a broader range of applications. However, existing methods sometimes lead to the generation of hallucinated captions, compromising caption quality. This paper explores the issue of hallucination in 3D object captioning, with a focus on Cap3D method, which renders 3D objects into 2D views for captioning using pre-trained models. We pinpoint a major challenge: certain rendered views of 3D objects are atypical, deviating from the training data of standard image captioning models and causing hallucinations. To tackle this, we present DiffuRank, a method that leverages a pre-trained text-to-3D model to assess the alignment between 3D objects and their 2D rendered views, where the view with high alignment closely represent the object's characteristics. By ranking all rendered views and feeding the top-ranked ones into GPT4-Vision, we enhance the accuracy and detail of captions, enabling the correction of 200k captions in the Cap3D dataset and extending it to 1 million captions across Objaverse and Objaverse-XL datasets. Additionally, we showcase the adaptability of DiffuRank by applying it to pre-trained text-to-image models for a Visual Question Answering task, where it outperforms the CLIP model.
Abstract:We introduce Cap3D, an automatic approach for generating descriptive text for 3D objects. This approach utilizes pretrained models from image captioning, image-text alignment, and LLM to consolidate captions from multiple views of a 3D asset, completely side-stepping the time-consuming and costly process of manual annotation. We apply Cap3D to the recently introduced large-scale 3D dataset, Objaverse, resulting in 660k 3D-text pairs. Our evaluation, conducted using 41k human annotations from the same dataset, demonstrates that Cap3D surpasses human-authored descriptions in terms of quality, cost, and speed. Through effective prompt engineering, Cap3D rivals human performance in generating geometric descriptions on 17k collected annotations from the ABO dataset. Finally, we finetune Text-to-3D models on Cap3D and human captions, and show Cap3D outperforms; and benchmark the SOTA including Point-E, Shape-E, and DreamFusion.
Abstract:Diffusion probabilistic models have shown great success in generating high-quality images controllably, and researchers have tried to utilize this controllability into text generation domain. Previous works on diffusion-based language models have shown that they can be trained without external knowledge (such as pre-trained weights) and still achieve stable performance and controllability. In this paper, we trained a diffusion-based model on StylePTB dataset, the standard benchmark for fine-grained text style transfers. The tasks in StylePTB requires much more refined control over the output text compared to tasks evaluated in previous works, and our model was able to achieve state-of-the-art performance on StylePTB on both individual and compositional transfers. Moreover, our model, trained on limited data from StylePTB without external knowledge, outperforms previous works that utilized pretrained weights, embeddings, and external grammar parsers, and this may indicate that diffusion-based language models have great potential under low-resource settings.
Abstract:Real-world tasks consist of multiple inter-dependent subtasks (e.g., a dirty pan needs to be washed before it can be used for cooking). In this work, we aim to model the causal dependencies between such subtasks from instructional videos describing the task. This is a challenging problem since complete information about the world is often inaccessible from videos, which demands robust learning mechanisms to understand the causal structure of events. We present Multimodal Subtask Graph Generation (MSG2), an approach that constructs a Subtask Graph defining the dependency between a task's subtasks relevant to a task from noisy web videos. Graphs generated by our multimodal approach are closer to human-annotated graphs compared to prior approaches. MSG2 further performs the downstream task of next subtask prediction 85% and 30% more accurately than recent video transformer models in the ProceL and CrossTask datasets, respectively.
Abstract:3D shapes have complementary abstractions from low-level geometry to part-based hierarchies to languages, which convey different levels of information. This paper presents a unified framework to translate between pairs of shape abstractions: $\textit{Text}$ $\Longleftrightarrow$ $\textit{Point Cloud}$ $\Longleftrightarrow$ $\textit{Program}$. We propose $\textbf{Neural Shape Compiler}$ to model the abstraction transformation as a conditional generation process. It converts 3D shapes of three abstract types into unified discrete shape code, transforms each shape code into code of other abstract types through the proposed $\textit{ShapeCode Transformer}$, and decodes them to output the target shape abstraction. Point Cloud code is obtained in a class-agnostic way by the proposed $\textit{Point}$VQVAE. On Text2Shape, ShapeGlot, ABO, Genre, and Program Synthetic datasets, Neural Shape Compiler shows strengths in $\textit{Text}$ $\Longrightarrow$ $\textit{Point Cloud}$, $\textit{Point Cloud}$ $\Longrightarrow$ $\textit{Text}$, $\textit{Point Cloud}$ $\Longrightarrow$ $\textit{Program}$, and Point Cloud Completion tasks. Additionally, Neural Shape Compiler benefits from jointly training on all heterogeneous data and tasks.
Abstract:Robustness of neural networks has recently been highlighted by the adversarial examples, i.e., inputs added with well-designed perturbations which are imperceptible to humans but can cause the network to give incorrect outputs. In this paper, we design a new CNN architecture that by itself has good robustness. We introduce a simple but powerful technique, Random Mask, to modify existing CNN structures. We show that CNN with Random Mask achieves state-of-the-art performance against black-box adversarial attacks without applying any adversarial training. We next investigate the adversarial examples which 'fool' a CNN with Random Mask. Surprisingly, we find that these adversarial examples often 'fool' humans as well. This raises fundamental questions on how to define adversarial examples and robustness properly.
Abstract:We address the problem of discovering 3D parts for objects in unseen categories. Being able to learn the geometry prior of parts and transfer this prior to unseen categories pose fundamental challenges on data-driven shape segmentation approaches. Formulated as a contextual bandit problem, we propose a learning-based agglomerative clustering framework which learns a grouping policy to progressively group small part proposals into bigger ones in a bottom-up fashion. At the core of our approach is to restrict the local context for extracting part-level features, which encourages the generalizability to unseen categories. On the large-scale fine-grained 3D part dataset, PartNet, we demonstrate that our method can transfer knowledge of parts learned from 3 training categories to 21 unseen testing categories without seeing any annotated samples. Quantitative comparisons against four shape segmentation baselines shows that our approach achieve the state-of-the-art performance.
Abstract:Robustness of convolutional neural networks has recently been highlighted by the adversarial examples, i.e., inputs added with well-designed perturbations which are imperceptible to humans but can cause the network to give incorrect outputs. Recent research suggests that the noises in adversarial examples break the textural structure, which eventually leads to wrong predictions by convolutional neural networks. To help a convolutional neural network make predictions relying less on textural information, we propose defective convolutional layers which contain defective neurons whose activations are set to be a constant function. As the defective neurons contain no information and are far different from the standard neurons in its spatial neighborhood, the textural features cannot be accurately extracted and the model has to seek for other features for classification, such as the shape. We first show that predictions made by the defective CNN are less dependent on textural information, but more on shape information, and further find that adversarial examples generated by the defective CNN appear to have semantic shapes. Experimental results demonstrate the defective CNN has higher defense ability than the standard CNN against various types of attack. In particular, it achieves state-of-the-art performance against transfer-based attacks without applying any adversarial training.
Abstract:In this paper, we propose to tackle the challenging few-shot learning (FSL) problem by learning global class representations using both base and novel class training samples. In each training episode, an episodic class mean computed from a support set is registered with the global representation via a registration module. This produces a registered global class representation for computing the classification loss using a query set. Though following a similar episodic training pipeline as existing meta learning based approaches, our method differs significantly in that novel class training samples are involved in the training from the beginning. To compensate for the lack of novel class training samples, an effective sample synthesis strategy is developed to avoid overfitting. Importantly, by joint base-novel class training, our approach can be easily extended to a more practical yet challenging FSL setting, i.e., generalized FSL, where the label space of test data is extended to both base and novel classes. Extensive experiments show that our approach is effective for both of the two FSL settings.
Abstract:Fine-grained classification is challenging due to the difficulty of finding discriminative features. Finding those subtle traits that fully characterize the object is not straightforward. To handle this circumstance, we propose a novel self-supervision mechanism to effectively localize informative regions without the need of bounding-box/part annotations. Our model, termed NTS-Net for Navigator-Teacher-Scrutinizer Network, consists of a Navigator agent, a Teacher agent and a Scrutinizer agent. In consideration of intrinsic consistency between informativeness of the regions and their probability being ground-truth class, we design a novel training paradigm, which enables Navigator to detect most informative regions under the guidance from Teacher. After that, the Scrutinizer scrutinizes the proposed regions from Navigator and makes predictions. Our model can be viewed as a multi-agent cooperation, wherein agents benefit from each other, and make progress together. NTS-Net can be trained end-to-end, while provides accurate fine-grained classification predictions as well as highly informative regions during inference. We achieve state-of-the-art performance in extensive benchmark datasets.