Abstract:Reconfigurable Intelligent Surfaces (RIS) are programmable metasurfaces utilizing sub-wavelength meta-atoms and a controller for precise electromagnetic wave manipulation. This work introduces an innovative channel coding scheme, termed RIS-based diffractional channel coding (DCC), which capitalizes on diffraction between two RIS layers for signal-level encoding. Contrary to traditional methods, DCC expands signal dimensions through diffraction, presenting a novel countermeasure to channel effects. This paper focuses on the operational principles of DCC, including encoder and decoder designs, and explores its possibilities to construct block and trellis codes, demonstrating its potential as both an alternative and a supplementary conventional coding scheme. Key advantages of DCC include eliminating extra power requirements for encoding, achieving computation at the speed of light, and enabling adjustable code distance, making it a progressive solution for efficient wireless communication, particularly in systems with large-scale data or massive MIMO.
Abstract:Machine learning models have shown exceptional prowess in solving complex issues across various domains. Nonetheless, these models can sometimes exhibit biased decision-making, leading to disparities in treatment across different groups. Despite the extensive research on fairness, the nuanced effects of multivariate and continuous sensitive variables on decision-making outcomes remain insufficiently studied. We introduce a novel data pre-processing algorithm, Orthogonal to Bias (OB), designed to remove the influence of a group of continuous sensitive variables, thereby facilitating counterfactual fairness in machine learning applications. Our approach is grounded in the assumption of a jointly normal distribution within a structural causal model (SCM), proving that counterfactual fairness can be achieved by ensuring the data is uncorrelated with sensitive variables. The OB algorithm is model-agnostic, catering to a wide array of machine learning models and tasks, and includes a sparse variant to enhance numerical stability through regularization. Through empirical evaluation on simulated and real-world datasets - including the adult income and the COMPAS recidivism datasets - our methodology demonstrates its capacity to enable fairer outcomes without compromising accuracy.
Abstract:Semantic communication has gained significant attention recently due to its advantages in achieving higher transmission efficiency by focusing on semantic information instead of bit-level information. However, current AI-based semantic communication methods require digital hardware for implementation. With the rapid advancement on reconfigurable intelligence surfaces (RISs), a new approach called on-the-air diffractional deep neural networks (D$^2$NN) can be utilized to enable semantic communications on the wave domain. This paper proposes a new paradigm of RIS-based on-the-air semantic communications, where the computational process occurs inherently as wireless signals pass through RISs. We present the system model and discuss the data and control flows of this scheme, followed by a performance analysis using image transmission as an example. In comparison to traditional hardware-based approaches, RIS-based semantic communications offer appealing features, such as light-speed computation, low computational power requirements, and the ability to handle multiple tasks simultaneously.
Abstract:A persistent challenge to table question answering (TableQA) by generating executable programs has been adapting to varied table structures, typically requiring domain-specific logical forms. In response, this paper introduces a unified TableQA framework that: (1) provides a unified representation for structured tables as multi-index Pandas data frames, (2) uses Python as a powerful querying language, and (3) uses few-shot prompting to translate NL questions into Python programs, which are executable on Pandas data frames. Furthermore, to answer complex relational questions with extended program functionality and external knowledge, our framework allows customized APIs that Python programs can call. We experiment with four TableQA datasets that involve tables of different structures -- relational, multi-table, and hierarchical matrix shapes -- and achieve prominent improvements over past state-of-the-art systems. In ablation studies, we (1) show benefits from our multi-index representation and APIs over baselines that use only an LLM, and (2) demonstrate that our approach is modular and can incorporate additional APIs.
Abstract:Graph neural networks have shown impressive capabilities in solving various graph learning tasks, particularly excelling in node classification. However, their effectiveness can be hindered by the challenges arising from the widespread existence of noisy measurements associated with the topological or nodal information present in real-world graphs. These inaccuracies in observations can corrupt the crucial patterns within the graph data, ultimately resulting in undesirable performance in practical applications. To address these issues, this paper proposes a novel uncertainty-aware graph learning framework motivated by distributionally robust optimization. Specifically, we use a graph neural network-based encoder to embed the node features and find the optimal node embeddings by minimizing the worst-case risk through a minimax formulation. Such an uncertainty-aware learning process leads to improved node representations and a more robust graph predictive model that effectively mitigates the impact of uncertainty arising from data noise. Our experimental result shows that the proposed framework achieves superior predictive performance compared to the state-of-the-art baselines under various noisy settings.
Abstract:General-purpose embedding is highly desirable for few-shot even zero-shot learning in many application scenarios, including audio tasks. In order to understand representations better, we conducted a thorough error analysis and visualization of HEAR 2021 submission results. Inspired by the analysis, this work experiments with different front-end audio preprocessing methods, including Constant-Q Transform (CQT) and Short-time Fourier transform (STFT), and proposes a Batch Embedding Covariance Regularization (BECR) term to uncover a more holistic simulation of the frequency information received by the human auditory system. We tested the models on the suite of HEAR 2021 tasks, which encompass a broad category of tasks. Preliminary results show (1) the proposed BECR can incur a more dispersed embedding on the test set, (2) BECR improves the PaSST model without extra computation complexity, and (3) STFT preprocessing outperforms CQT in all tasks we tested. Github:https://github.com/ankitshah009/general_audio_embedding_hear_2021
Abstract:Deep learning models for non-intrusive load monitoring (NILM) tend to require a large amount of labeled data for training. However, it is difficult to generalize the trained models to unseen sites due to different load characteristics and operating patterns of appliances between data sets. For addressing such problems, self-supervised learning (SSL) is proposed in this paper, where labeled appliance-level data from the target data set or house is not required. Initially, only the aggregate power readings from target data set are required to pre-train a general network via a self-supervised pretext task to map aggregate power sequences to derived representatives. Then, supervised downstream tasks are carried out for each appliance category to fine-tune the pre-trained network, where the features learned in the pretext task are transferred. Utilizing labeled source data sets enables the downstream tasks to learn how each load is disaggregated, by mapping the aggregate to labels. Finally, the fine-tuned network is applied to load disaggregation for the target sites. For validation, multiple experimental cases are designed based on three publicly accessible REDD, UK-DALE, and REFIT data sets. Besides, state-of-the-art neural networks are employed to perform NILM task in the experiments. Based on the NILM results in various cases, SSL generally outperforms zero-shot learning in improving load disaggregation performance without any sub-metering data from the target data sets.