Machine learning models have shown exceptional prowess in solving complex issues across various domains. Nonetheless, these models can sometimes exhibit biased decision-making, leading to disparities in treatment across different groups. Despite the extensive research on fairness, the nuanced effects of multivariate and continuous sensitive variables on decision-making outcomes remain insufficiently studied. We introduce a novel data pre-processing algorithm, Orthogonal to Bias (OB), designed to remove the influence of a group of continuous sensitive variables, thereby facilitating counterfactual fairness in machine learning applications. Our approach is grounded in the assumption of a jointly normal distribution within a structural causal model (SCM), proving that counterfactual fairness can be achieved by ensuring the data is uncorrelated with sensitive variables. The OB algorithm is model-agnostic, catering to a wide array of machine learning models and tasks, and includes a sparse variant to enhance numerical stability through regularization. Through empirical evaluation on simulated and real-world datasets - including the adult income and the COMPAS recidivism datasets - our methodology demonstrates its capacity to enable fairer outcomes without compromising accuracy.