Abstract:In recent years, large language models (LLMs) have been widely adopted in political science tasks such as election prediction, sentiment analysis, policy impact assessment, and misinformation detection. Meanwhile, the need to systematically understand how LLMs can further revolutionize the field also becomes urgent. In this work, we--a multidisciplinary team of researchers spanning computer science and political science--present the first principled framework termed Political-LLM to advance the comprehensive understanding of integrating LLMs into computational political science. Specifically, we first introduce a fundamental taxonomy classifying the existing explorations into two perspectives: political science and computational methodologies. In particular, from the political science perspective, we highlight the role of LLMs in automating predictive and generative tasks, simulating behavior dynamics, and improving causal inference through tools like counterfactual generation; from a computational perspective, we introduce advancements in data preparation, fine-tuning, and evaluation methods for LLMs that are tailored to political contexts. We identify key challenges and future directions, emphasizing the development of domain-specific datasets, addressing issues of bias and fairness, incorporating human expertise, and redefining evaluation criteria to align with the unique requirements of computational political science. Political-LLM seeks to serve as a guidebook for researchers to foster an informed, ethical, and impactful use of Artificial Intelligence in political science. Our online resource is available at: http://political-llm.org/.
Abstract:The rapid deployment of distributed energy resources (DER) has introduced significant spatio-temporal uncertainties in power grid management, necessitating accurate multilevel forecasting methods. However, existing approaches often produce overly conservative uncertainty intervals at individual spatial units and fail to properly capture uncertainties when aggregating predictions across different spatial scales. This paper presents a novel hierarchical spatio-temporal model based on the conformal prediction framework to address these challenges. Our approach generates circuit-level DER growth predictions and efficiently aggregates them to the substation level while maintaining statistical validity through a tailored non-conformity score. Applied to a decade of DER installation data from a local utility network, our method demonstrates superior performance over existing approaches, particularly in reducing prediction interval widths while maintaining coverage.
Abstract:Time series data are crucial across diverse domains such as finance and healthcare, where accurate forecasting and decision-making rely on advanced modeling techniques. While generative models have shown great promise in capturing the intricate dynamics inherent in time series, evaluating their performance remains a major challenge. Traditional evaluation metrics fall short due to the temporal dependencies and potential high dimensionality of the features. In this paper, we propose the REcurrent NeurAL (RENAL) Goodness-of-Fit test, a novel and statistically rigorous framework for evaluating generative time series models. By leveraging recurrent neural networks, we transform the time series into conditionally independent data pairs, enabling the application of a chi-square-based goodness-of-fit test to the temporal dependencies within the data. This approach offers a robust, theoretically grounded solution for assessing the quality of generative models, particularly in settings with limited time sequences. We demonstrate the efficacy of our method across both synthetic and real-world datasets, outperforming existing methods in terms of reliability and accuracy. Our method fills a critical gap in the evaluation of time series generative models, offering a tool that is both practical and adaptable to high-stakes applications.
Abstract:Generative models have shown significant promise in critical domains such as medical diagnosis, autonomous driving, and climate science, where reliable decision-making hinges on accurate uncertainty quantification. While probabilistic conformal prediction (PCP) offers a powerful framework for this purpose, its coverage efficiency -- the size of the uncertainty set -- is limited when dealing with complex underlying distributions and a finite number of generated samples. In this paper, we propose a novel PCP framework that enhances efficiency by first vectorizing the non-conformity scores with ranked samples and then optimizing the shape of the prediction set by varying the quantiles for samples at the same rank. Our method delivers valid coverage while producing discontinuous and more efficient prediction sets, making it particularly suited for high-stakes applications. We demonstrate the effectiveness of our approach through experiments on both synthetic and real-world datasets.
Abstract:The surge in data availability has inundated decision-makers with an overwhelming array of choices. While existing approaches focus on optimizing decisions based on quantifiable metrics, practical decision-making often requires balancing measurable quantitative criteria with unmeasurable qualitative factors embedded in the broader context. In such cases, algorithms can generate high-quality recommendations, but the final decision rests with the human, who must weigh both dimensions. We define the process of selecting the optimal set of algorithmic recommendations in this context as human-centered decision making. To address this challenge, we introduce a novel framework called generative curation, which optimizes the true desirability of decision options by integrating both quantitative and qualitative aspects. Our framework uses a Gaussian process to model unknown qualitative factors and derives a diversity metric that balances quantitative optimality with qualitative diversity. This trade-off enables the generation of a manageable subset of diverse, near-optimal actions that are robust to unknown qualitative preferences. To operationalize this framework, we propose two implementation approaches: a generative neural network architecture that produces a distribution $\pi$ to efficiently sample a diverse set of near-optimal actions, and a sequential optimization method to iteratively generates solutions that can be easily incorporated into complex optimization formulations. We validate our approach with extensive datasets, demonstrating its effectiveness in enhancing decision-making processes across a range of complex environments, with significant implications for policy and management.
Abstract:Modeling and analysis for event series generated by heterogeneous users of various behavioral patterns are closely involved in our daily lives, including credit card fraud detection, online platform user recommendation, and social network analysis. The most commonly adopted approach to this task is to classify users into behavior-based categories and analyze each of them separately. However, this approach requires extensive data to fully understand user behavior, presenting challenges in modeling newcomers without historical knowledge. In this paper, we propose a novel discrete event prediction framework for new users through the lens of causal inference. Our method offers an unbiased prediction for new users without needing to know their categories. We treat the user event history as the ''treatment'' for future events and the user category as the key confounder. Thus, the prediction problem can be framed as counterfactual outcome estimation, with the new user model trained on an adjusted dataset where each event is re-weighted by its inverse propensity score. We demonstrate the superior performance of the proposed framework with a numerical simulation study and two real-world applications, including Netflix rating prediction and seller contact prediction for customer support at Amazon.
Abstract:In this paper, we leverage the power of latent diffusion models to generate synthetic time series tabular data. Along with the temporal and feature correlations, the heterogeneous nature of the feature in the table has been one of the main obstacles in time series tabular data modeling. We tackle this problem by combining the ideas of the variational auto-encoder (VAE) and the denoising diffusion probabilistic model (DDPM). Our model named as \texttt{TimeAutoDiff} has several key advantages including (1) Generality: the ability to handle the broad spectrum of time series tabular data from single to multi-sequence datasets; (2) Good fidelity and utility guarantees: numerical experiments on six publicly available datasets demonstrating significant improvements over state-of-the-art models in generating time series tabular data, across four metrics measuring fidelity and utility; (3) Fast sampling speed: entire time series data generation as opposed to the sequential data sampling schemes implemented in the existing diffusion-based models, eventually leading to significant improvements in sampling speed, (4) Entity conditional generation: the first implementation of conditional generation of multi-sequence time series tabular data with heterogenous features in the literature, enabling scenario exploration across multiple scientific and engineering domains. Codes are in preparation for release to the public, but available upon request.
Abstract:Machine learning models have shown exceptional prowess in solving complex issues across various domains. Nonetheless, these models can sometimes exhibit biased decision-making, leading to disparities in treatment across different groups. Despite the extensive research on fairness, the nuanced effects of multivariate and continuous sensitive variables on decision-making outcomes remain insufficiently studied. We introduce a novel data pre-processing algorithm, Orthogonal to Bias (OB), designed to remove the influence of a group of continuous sensitive variables, thereby facilitating counterfactual fairness in machine learning applications. Our approach is grounded in the assumption of a jointly normal distribution within a structural causal model (SCM), proving that counterfactual fairness can be achieved by ensuring the data is uncorrelated with sensitive variables. The OB algorithm is model-agnostic, catering to a wide array of machine learning models and tasks, and includes a sparse variant to enhance numerical stability through regularization. Through empirical evaluation on simulated and real-world datasets - including the adult income and the COMPAS recidivism datasets - our methodology demonstrates its capacity to enable fairer outcomes without compromising accuracy.
Abstract:Bayesian optimization (BO) has emerged as a potent tool for addressing intricate decision-making challenges, especially in public policy domains such as police districting. However, its broader application in public policymaking is hindered by the complexity of defining feasible regions and the high-dimensionality of decisions. This paper introduces the Hidden-Constrained Latent Space Bayesian Optimization (HC-LSBO), a novel BO method integrated with a latent decision model. This approach leverages a variational autoencoder to learn the distribution of feasible decisions, enabling a two-way mapping between the original decision space and a lower-dimensional latent space. By doing so, HC-LSBO captures the nuances of hidden constraints inherent in public policymaking, allowing for optimization in the latent space while evaluating objectives in the original space. We validate our method through numerical experiments on both synthetic and real data sets, with a specific focus on large-scale police districting problems in Atlanta, Georgia. Our results reveal that HC-LSBO offers notable improvements in performance and efficiency compared to the baselines.
Abstract:Energy justice is a growing area of interest in interdisciplinary energy research. However, identifying systematic biases in the energy sector remains challenging due to confounding variables, intricate heterogeneity in treatment effects, and limited data availability. To address these challenges, we introduce a novel approach for counterfactual causal analysis centered on energy justice. We use subgroup analysis to manage diverse factors and leverage the idea of transfer learning to mitigate data scarcity in each subgroup. In our numerical analysis, we apply our method to a large-scale customer-level power outage data set and investigate the counterfactual effect of demographic factors, such as income and age of the population, on power outage durations. Our results indicate that low-income and elderly-populated areas consistently experience longer power outages, regardless of weather conditions. This points to existing biases in the power system and highlights the need for focused improvements in areas with economic challenges.