Abstract:Supervisory signals are a critical resource for training learning to rank models. In many real-world search and retrieval scenarios, these signals may not be readily available or could be costly to obtain for some queries. The examples include domains where labeling requires professional expertise, applications with strong privacy constraints, and user engagement information that are too scarce. We refer to these scenarios as sparsely supervised queries which pose significant challenges to traditional learning to rank models. In this work, we address sparsely supervised queries by proposing a novel meta learning to rank framework which leverages fast learning and adaption capability of meta-learning. The proposed approach accounts for the fact that different queries have different optimal parameters for their rankers, in contrast to traditional learning to rank models which only learn a global ranking model applied to all the queries. In consequence, the proposed method would yield significant advantages especially when new queries are of different characteristics with the training queries. Moreover, the proposed meta learning to rank framework is generic and flexible. We conduct a set of comprehensive experiments on both public datasets and a real-world e-commerce dataset. The results demonstrate that the proposed meta-learning approach can significantly enhance the performance of learning to rank models with sparsely labeled queries.
Abstract:High relevance of retrieved and re-ranked items to the search query is the cornerstone of successful product search, yet measuring relevance of items to queries is one of the most challenging tasks in product information retrieval, and quality of product search is highly influenced by the precision and scale of available relevance-labelled data. In this paper, we present an array of techniques for leveraging Large Language Models (LLMs) for automating the relevance judgment of query-item pairs (QIPs) at scale. Using a unique dataset of multi-million QIPs, annotated by human evaluators, we test and optimize hyper parameters for finetuning billion-parameter LLMs with and without Low Rank Adaption (LoRA), as well as various modes of item attribute concatenation and prompting in LLM finetuning, and consider trade offs in item attribute inclusion for quality of relevance predictions. We demonstrate considerable improvement over baselines of prior generations of LLMs, as well as off-the-shelf models, towards relevance annotations on par with the human relevance evaluators. Our findings have immediate implications for the growing field of relevance judgment automation in product search.
Abstract:Product ranking is a crucial component for many e-commerce services. One of the major challenges in product search is the vocabulary mismatch between query and products, which may be a larger vocabulary gap problem compared to other information retrieval domains. While there is a growing collection of neural learning to match methods aimed specifically at overcoming this issue, they do not leverage the recent advances of large language models for product search. On the other hand, product ranking often deals with multiple types of engagement signals such as clicks, add-to-cart, and purchases, while most of the existing works are focused on optimizing one single metric such as click-through rate, which may suffer from data sparsity. In this work, we propose a novel end-to-end multi-task learning framework for product ranking with BERT to address the above challenges. The proposed model utilizes domain-specific BERT with fine-tuning to bridge the vocabulary gap and employs multi-task learning to optimize multiple objectives simultaneously, which yields a general end-to-end learning framework for product search. We conduct a set of comprehensive experiments on a real-world e-commerce dataset and demonstrate significant improvement of the proposed approach over the state-of-the-art baseline methods.