Abstract:In product search, the retrieval of candidate products before re-ranking is more critical and challenging than other search like web search, especially for tail queries, which have a complex and specific search intent. In this paper, we present a hybrid system for e-commerce search deployed at Walmart that combines traditional inverted index and embedding-based neural retrieval to better answer user tail queries. Our system significantly improved the relevance of the search engine, measured by both offline and online evaluations. The improvements were achieved through a combination of different approaches. We present a new technique to train the neural model at scale. and describe how the system was deployed in production with little impact on response time. We highlight multiple learnings and practical tricks that were used in the deployment of this system.
Abstract:Combinatorial optimization (CO) is essential for improving efficiency and performance in engineering applications. As complexity increases with larger problem sizes and more intricate dependencies, identifying the optimal solution become challenging. When it comes to real-world engineering problems, algorithms based on pure mathematical reasoning are limited and incapable to capture the contextual nuances necessary for optimization. This study explores the potential of Large Language Models (LLMs) in solving engineering CO problems by leveraging their reasoning power and contextual knowledge. We propose a novel LLM-based framework that integrates network topology and domain knowledge to optimize the sequencing of Design Structure Matrix (DSM)-a common CO problem. Our experiments on various DSM cases demonstrate that the proposed method achieves faster convergence and higher solution quality than benchmark methods. Moreover, results show that incorporating contextual domain knowledge significantly improves performance despite the choice of LLMs. These findings highlight the potential of LLMs in tackling complex real-world CO problems by combining semantic and mathematical reasoning. This approach paves the way for a new paradigm in in real-world combinatorial optimization.
Abstract:Graph Neural Networks (GNNs) excel at handling graph data but remain vulnerable to adversarial attacks. Existing defense methods typically rely on assumptions like graph sparsity and homophily to either preprocess the graph or guide structure learning. However, preprocessing methods often struggle to accurately distinguish between normal edges and adversarial perturbations, leading to suboptimal results due to the loss of valuable edge information. Robust graph neural network models train directly on graph data affected by adversarial perturbations, without preprocessing. This can cause the model to get stuck in poor local optima, negatively affecting its performance. To address these challenges, we propose Perseus, a novel adversarial defense method based on curriculum learning. Perseus assesses edge difficulty using global homophily and applies a curriculum learning strategy to adjust the learning order, guiding the model to learn the full graph structure while adaptively focusing on common data patterns. This approach mitigates the impact of adversarial perturbations. Experiments show that models trained with Perseus achieve superior performance and are significantly more robust to adversarial attacks.
Abstract:Graph neural network (GNN) models play a pivotal role in numerous tasks involving graph-related data analysis. Despite their efficacy, similar to other deep learning models, GNNs are susceptible to adversarial attacks. Even minor perturbations in graph data can induce substantial alterations in model predictions. While existing research has explored various adversarial defense techniques for GNNs, the challenge of defending against adversarial attacks on real-world scale graph data remains largely unresolved. On one hand, methods reliant on graph purification and preprocessing tend to excessively emphasize local graph information, leading to sub-optimal defensive outcomes. On the other hand, approaches rooted in graph structure learning entail significant time overheads, rendering them impractical for large-scale graphs. In this paper, we propose a new defense method named Talos, which enhances the global, rather than local, homophily of graphs as a defense. Experiments show that the proposed approach notably outperforms state-of-the-art defense approaches, while imposing little computational overhead.
Abstract:Prognostics and health management (PHM) is essential for industrial operation and maintenance, focusing on predicting, diagnosing, and managing the health status of industrial systems. The emergence of the ChatGPT-Like large-scale language model (LLM) has begun to lead a new round of innovation in the AI field. It has extensively promoted the level of intelligence in various fields. Therefore, it is also expected further to change the application paradigm in industrial PHM and promote PHM to become intelligent. Although ChatGPT-Like LLMs have rich knowledge reserves and powerful language understanding and generation capabilities, they lack domain-specific expertise, significantly limiting their practicability in PHM applications. To this end, this study explores the ChatGPT-Like LLM empowered by the local knowledge base (LKB) in industrial PHM to solve the above limitations. In addition, we introduce the method and steps of combining the LKB with LLMs, including LKB preparation, LKB vectorization, prompt engineering, etc. Experimental analysis of real cases shows that combining the LKB with ChatGPT-Like LLM can significantly improve its performance and make ChatGPT-Like LLMs more accurate, relevant, and able to provide more insightful information. This can promote the development of ChatGPT-Like LLMs in industrial PHM and promote their efficiency and quality.
Abstract:Modern radar systems have high requirements in terms of accuracy, robustness and real-time capability when operating on increasingly complex electromagnetic environments. Traditional radar signal processing (RSP) methods have shown some limitations when meeting such requirements, particularly in matters of target classification. With the rapid development of machine learning (ML), especially deep learning, radar researchers have started integrating these new methods when solving RSP-related problems. This paper aims at helping researchers and practitioners to better understand the application of ML techniques to RSP-related problems by providing a comprehensive, structured and reasoned literature overview of ML-based RSP techniques. This work is amply introduced by providing general elements of ML-based RSP and by stating the motivations behind them. The main applications of ML-based RSP are then analysed and structured based on the application field. This paper then concludes with a series of open questions and proposed research directions, in order to indicate current gaps and potential future solutions and trends.
Abstract:Generating informative responses in end-to-end neural dialogue systems attracts a lot of attention in recent years. Various previous work leverages external knowledge and the dialogue contexts to generate such responses. Nevertheless, few has demonstrated their capability on incorporating the appropriate knowledge in response generation. Motivated by this, we propose a novel open-domain conversation generation model in this paper, which employs the posterior knowledge distribution to guide knowledge selection, therefore generating more appropriate and informative responses in conversations. To the best of our knowledge, we are the first one who utilize the posterior knowledge distribution to facilitate conversation generation. Our experiments on both automatic and human evaluation clearly verify the superior performance of our model over the state-of-the-art baselines.