Abstract:Graph neural network (GNN) models play a pivotal role in numerous tasks involving graph-related data analysis. Despite their efficacy, similar to other deep learning models, GNNs are susceptible to adversarial attacks. Even minor perturbations in graph data can induce substantial alterations in model predictions. While existing research has explored various adversarial defense techniques for GNNs, the challenge of defending against adversarial attacks on real-world scale graph data remains largely unresolved. On one hand, methods reliant on graph purification and preprocessing tend to excessively emphasize local graph information, leading to sub-optimal defensive outcomes. On the other hand, approaches rooted in graph structure learning entail significant time overheads, rendering them impractical for large-scale graphs. In this paper, we propose a new defense method named Talos, which enhances the global, rather than local, homophily of graphs as a defense. Experiments show that the proposed approach notably outperforms state-of-the-art defense approaches, while imposing little computational overhead.
Abstract:New York City has been recognized as the world's epicenter of the novel Coronavirus pandemic. To identify the key inherent factors that are highly correlated to the Increase Rate of COVID-19 new cases in NYC, we propose an unsupervised machine learning framework. Based on the assumption that ZIP code areas with similar demographic, socioeconomic, and mobility patterns are likely to experience similar outbreaks, we select the most relevant features to perform a clustering that can best reflect the spread, and map them down to 9 interpretable categories. We believe that our findings can guide policy makers to promptly anticipate and prevent the spread of the virus by taking the right measures.