Abstract:There has been a growing interest in the ability of neural networks to solve algorithmic tasks, such as arithmetic, summary statistics, and sorting. While state-of-the-art models like Transformers have demonstrated good generalization performance on in-distribution tasks, their out-of-distribution (OOD) performance is poor when trained end-to-end. In this paper, we focus on value generalization, a common instance of OOD generalization where the test distribution has the same input sequence length as the training distribution, but the value ranges in the training and test distributions do not necessarily overlap. To address this issue, we propose that using fixed positional encodings to determine attention weights-referred to as positional attention-enhances empirical OOD performance while maintaining expressivity. We support our claim about expressivity by proving that Transformers with positional attention can effectively simulate parallel algorithms.
Abstract:Knowledge-based recommendation models effectively alleviate the data sparsity issue leveraging the side information in the knowledge graph, and have achieved considerable performance. Nevertheless, the knowledge graphs used in previous work, namely metadata-based knowledge graphs, are usually constructed based on the attributes of items and co-occurring relations (e.g., also buy), in which the former provides limited information and the latter relies on sufficient interaction data and still suffers from cold start issue. Common sense, as a form of knowledge with generality and universality, can be used as a supplement to the metadata-based knowledge graph and provides a new perspective for modeling users' preferences. Recently, benefiting from the emergent world knowledge of the large language model, efficient acquisition of common sense has become possible. In this paper, we propose a novel knowledge-based recommendation framework incorporating common sense, CSRec, which can be flexibly coupled to existing knowledge-based methods. Considering the challenge of the knowledge gap between the common sense-based knowledge graph and metadata-based knowledge graph, we propose a knowledge fusion approach based on mutual information maximization theory. Experimental results on public datasets demonstrate that our approach significantly improves the performance of existing knowledge-based recommendation models.
Abstract:Sequential recommender systems predict items that may interest users by modeling their preferences based on historical interactions. Traditional sequential recommendation methods rely on capturing implicit collaborative filtering signals among items. Recent relation-aware sequential recommendation models have achieved promising performance by explicitly incorporating item relations into the modeling of user historical sequences, where most relations are extracted from knowledge graphs. However, existing methods rely on manually predefined relations and suffer the sparsity issue, limiting the generalization ability in diverse scenarios with varied item relations. In this paper, we propose a novel relation-aware sequential recommendation framework with Latent Relation Discovery (LRD). Different from previous relation-aware models that rely on predefined rules, we propose to leverage the Large Language Model (LLM) to provide new types of relations and connections between items. The motivation is that LLM contains abundant world knowledge, which can be adopted to mine latent relations of items for recommendation. Specifically, inspired by that humans can describe relations between items using natural language, LRD harnesses the LLM that has demonstrated human-like knowledge to obtain language knowledge representations of items. These representations are fed into a latent relation discovery module based on the discrete state variational autoencoder (DVAE). Then the self-supervised relation discovery tasks and recommendation tasks are jointly optimized. Experimental results on multiple public datasets demonstrate our proposed latent relations discovery method can be incorporated with existing relation-aware sequential recommendation models and significantly improve the performance. Further analysis experiments indicate the effectiveness and reliability of the discovered latent relations.
Abstract:Item representation learning (IRL) plays an essential role in recommender systems, especially for sequential recommendation. Traditional sequential recommendation models usually utilize ID embeddings to represent items, which are not shared across different domains and lack the transferable ability. Recent studies use pre-trained language models (PLM) for item text embeddings (text-based IRL) that are universally applicable across domains. However, the existing text-based IRL is unaware of the important collaborative filtering (CF) information. In this paper, we propose CoWPiRec, an approach of Collaborative Word-based Pre-trained item representation for Recommendation. To effectively incorporate CF information into text-based IRL, we convert the item-level interaction data to a word graph containing word-level collaborations. Subsequently, we design a novel pre-training task to align the word-level semantic- and CF-related item representation. Extensive experimental results on multiple public datasets demonstrate that compared to state-of-the-art transferable sequential recommenders, CoWPiRec achieves significantly better performances in both fine-tuning and zero-shot settings for cross-scenario recommendation and effectively alleviates the cold-start issue. The code is available at: https://github.com/ysh-1998/CoWPiRec.
Abstract:The growing interest in machine learning problems over graphs with additional node information such as texts, images, or labels has popularized methods that require the costly operation of processing the entire graph. Yet, little effort has been made to the development of fast local methods (i.e. without accessing the entire graph) that extract useful information from such data. To that end, we propose a study of local graph clustering using noisy node labels as a proxy for additional node information. In this setting, nodes receive initial binary labels based on cluster affiliation: 1 if they belong to the target cluster and 0 otherwise. Subsequently, a fraction of these labels is flipped. We investigate the benefits of incorporating noisy labels for local graph clustering. By constructing a weighted graph with such labels, we study the performance of graph diffusion-based local clustering method on both the original and the weighted graphs. From a theoretical perspective, we consider recovering an unknown target cluster with a single seed node in a random graph with independent noisy node labels. We provide sufficient conditions on the label noise under which, with high probability, using diffusion in the weighted graph yields a more accurate recovery of the target cluster. This approach proves more effective than using the given labels alone or using diffusion in the label-free original graph. Empirically, we show that reliable node labels can be obtained with just a few samples from an attributed graph. Moreover, utilizing these labels via diffusion in the weighted graph leads to significantly better local clustering performance across several real-world datasets, improving F1 scores by up to 13%.
Abstract:Set representation has become ubiquitous in deep learning for modeling the inductive bias of neural networks that are insensitive to the input order. DeepSets is the most widely used neural network architecture for set representation. It involves embedding each set element into a latent space with dimension $L$, followed by a sum pooling to obtain a whole-set embedding, and finally mapping the whole-set embedding to the output. In this work, we investigate the impact of the dimension $L$ on the expressive power of DeepSets. Previous analyses either oversimplified high-dimensional features to be one-dimensional features or were limited to analytic activations, thereby diverging from practical use or resulting in $L$ that grows exponentially with the set size $N$ and feature dimension $D$. To investigate the minimal value of $L$ that achieves sufficient expressive power, we present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE). We demonstrate that $L$ being poly$(N, D)$ is sufficient for set representation using both embedding layers. We also provide a lower bound of $L$ for the LP embedding layer. Furthermore, we extend our results to permutation-equivariant set functions and the complex field.
Abstract:The recent years we have seen the rise of graph neural networks for prediction tasks on graphs. One of the dominant architectures is graph attention due to its ability to make predictions using weighted edge features and not only node features. In this paper we analyze, theoretically and empirically, graph attention networks and their ability of correctly labelling nodes in a classic classification task. More specifically, we study the performance of graph attention on the classic contextual stochastic block model (CSBM). In CSBM the nodes and edge features are obtained from a mixture of Gaussians and the edges from a stochastic block model. We consider a general graph attention mechanism that takes random edge features as input to determine the attention coefficients. We study two cases, in the first one, when the edge features are noisy, we prove that the majority of the attention coefficients are up to a constant uniform. This allows us to prove that graph attention with edge features is not better than simple graph convolution for achieving perfect node classification. Second, we prove that when the edge features are clean graph attention can distinguish intra- from inter-edges and this makes graph attention better than classic graph convolution.
Abstract:Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data and further solve relevant prediction tasks built upon such higher-order relations. However, higher-order relations in practice contain complex patterns and are often highly irregular. So, it is often challenging to design an HNN that suffices to express those relations while keeping computational efficiency. Inspired by hypergraph diffusion algorithms, this work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators that can model a wide range of higher-order relations. ED-HNN can be implemented efficiently by combining star expansions of hypergraphs with standard message passing neural networks. ED-HNN further shows great superiority in processing heterophilic hypergraphs and constructing deep models. We evaluate ED-HNN for node classification on nine real-world hypergraph datasets. ED-HNN uniformly outperforms the best baselines over these nine datasets and achieves more than 2\%$\uparrow$ in prediction accuracy over four datasets therein.
Abstract:Graph-based learning is a rapidly growing sub-field of machine learning with applications in social networks, citation networks, and bioinformatics. One of the most popular type of models is graph attention networks. These models were introduced to allow a node to aggregate information from the features of neighbor nodes in a non-uniform way in contrast to simple graph convolution which does not distinguish the neighbors of a node. In this paper, we study theoretically this expected behaviour of graph attention networks. We prove multiple results on the performance of the graph attention mechanism for the problem of node classification for a contextual stochastic block model. Here the features of the nodes are obtained from a mixture of Gaussians and the edges from a stochastic block model where the features and the edges are coupled in a natural way. First, we show that in an "easy" regime, where the distance between the means of the Gaussians is large enough, graph attention maintains the weights of intra-class edges and significantly reduces the weights of the inter-class edges. As a corollary, we show that this implies perfect node classification independent of the weights of inter-class edges. However, a classical argument shows that in the "easy" regime, the graph is not needed at all to classify the data with high probability. In the "hard" regime, we show that every attention mechanism fails to distinguish intra-class from inter-class edges. We evaluate our theoretical results on synthetic and real-world data.
Abstract:A plethora of real-world problems require utilization of hypergraphs and diffusion algorithms. Examples include recommendation systems, node ranking in food networks and community detection in social networks to mention a few. Due to the increased size and complexity of real hypergraphs, local and accurate diffusion algorithms that work with the most complex hypergraphs are in need. We propose the first local diffusion method that works on higher-order relations with only a submodularity assumption. Our method is based on a primal-dual optimization formulation where the primal problem has a natural network flow interpretation, and the dual problem has a cut-based interpretation using the $\ell_2$-norm penalty for general submodular cut-costs. We prove that the proposed formulation achieves quadratic approximation error for the problem of local hypergraph clustering. We demonstrate that the new technique is significantly better than state-of-the-art methods over a range of real datasets for the local hypergraph clustering and node ranking problems.