Abstract:Spectrum sharing is increasingly vital in 6G wireless communication, facilitating dynamic access to unused spectrum holes. Recently, there has been a significant shift towards employing machine learning (ML) techniques for sensing spectrum holes. In this context, federated learning (FL)-enabled spectrum sensing technology has garnered wide attention, allowing for the construction of an aggregated ML model without disclosing the private spectrum sensing information of wireless user devices. However, the integrity of collaborative training and the privacy of spectrum information from local users have remained largely unexplored. This article first examines the latest developments in FL-enabled spectrum sharing for prospective 6G scenarios. It then identifies practical attack vectors in 6G to illustrate potential AI-powered security and privacy threats in these contexts. Finally, the study outlines future directions, including practical defense challenges and guidelines.
Abstract:Honeyfiles are security assets designed to attract and detect intruders on compromised systems. Honeyfiles are a type of honeypot that mimic real, sensitive documents, creating the illusion of the presence of valuable data. Interaction with a honeyfile reveals the presence of an intruder, and can provide insights into their goals and intentions. Their practical use, however, is limited by the time, cost and effort associated with manually creating realistic content. The introduction of large language models has made high-quality text generation accessible, but honeyfiles contain a variety of content including charts, tables and images. This content needs to be plausible and realistic, as well as semantically consistent both within honeyfiles and with the real documents they mimic, to successfully deceive an intruder. In this paper, we focus on an important component of the honeyfile content generation problem: document charts. Charts are ubiquitous in corporate documents and are commonly used to communicate quantitative and scientific data. Existing image generation models, such as DALL-E, are rather prone to generating charts with incomprehensible text and unconvincing data. We take a multi-modal approach to this problem by combining two purpose-built generative models: a multitask Transformer and a specialized multi-head autoencoder. The Transformer generates realistic captions and plot text, while the autoencoder generates the underlying tabular data for the plot. To advance the field of automated honeyplot generation, we also release a new document-chart dataset and propose a novel metric Keyword Semantic Matching (KSM). This metric measures the semantic consistency between keywords of a corpus and a smaller bag of words. Extensive experiments demonstrate excellent performance against multiple large language models, including ChatGPT and GPT4.
Abstract:Transformer-based text classifiers like BERT, Roberta, T5, and GPT-3 have shown impressive performance in NLP. However, their vulnerability to adversarial examples poses a security risk. Existing defense methods lack interpretability, making it hard to understand adversarial classifications and identify model vulnerabilities. To address this, we propose the Interpretability and Transparency-Driven Detection and Transformation (IT-DT) framework. It focuses on interpretability and transparency in detecting and transforming textual adversarial examples. IT-DT utilizes techniques like attention maps, integrated gradients, and model feedback for interpretability during detection. This helps identify salient features and perturbed words contributing to adversarial classifications. In the transformation phase, IT-DT uses pre-trained embeddings and model feedback to generate optimal replacements for perturbed words. By finding suitable substitutions, we aim to convert adversarial examples into non-adversarial counterparts that align with the model's intended behavior while preserving the text's meaning. Transparency is emphasized through human expert involvement. Experts review and provide feedback on detection and transformation results, enhancing decision-making, especially in complex scenarios. The framework generates insights and threat intelligence empowering analysts to identify vulnerabilities and improve model robustness. Comprehensive experiments demonstrate the effectiveness of IT-DT in detecting and transforming adversarial examples. The approach enhances interpretability, provides transparency, and enables accurate identification and successful transformation of adversarial inputs. By combining technical analysis and human expertise, IT-DT significantly improves the resilience and trustworthiness of transformer-based text classifiers against adversarial attacks.
Abstract:Cloud-enabled Machine Learning as a Service (MLaaS) has shown enormous promise to transform how deep learning models are developed and deployed. Nonetheless, there is a potential risk associated with the use of such services since a malicious party can modify them to achieve an adverse result. Therefore, it is imperative for model owners, service providers, and end-users to verify whether the deployed model has not been tampered with or not. Such verification requires public verifiability (i.e., fingerprinting patterns are available to all parties, including adversaries) and black-box access to the deployed model via APIs. Existing watermarking and fingerprinting approaches, however, require white-box knowledge (such as gradient) to design the fingerprinting and only support private verifiability, i.e., verification by an honest party. In this paper, we describe a practical watermarking technique that enables black-box knowledge in fingerprint design and black-box queries during verification. The service ensures the integrity of cloud-based services through public verification (i.e. fingerprinting patterns are available to all parties, including adversaries). If an adversary manipulates a model, this will result in a shift in the decision boundary. Thus, the underlying principle of double-black watermarking is that a model's decision boundary could serve as an inherent fingerprint for watermarking. Our approach captures the decision boundary by generating a limited number of encysted sample fingerprints, which are a set of naturally transformed and augmented inputs enclosed around the model's decision boundary in order to capture the inherent fingerprints of the model. We evaluated our watermarking approach against a variety of model integrity attacks and model compression attacks.
Abstract:URLs are central to a myriad of cyber-security threats, from phishing to the distribution of malware. Their inherent ease of use and familiarity is continuously abused by attackers to evade defences and deceive end-users. Seemingly dissimilar URLs are being used in an organized way to perform phishing attacks and distribute malware. We refer to such behaviours as campaigns, with the hypothesis being that attacks are often coordinated to maximize success rates and develop evasion tactics. The aim is to gain better insights into campaigns, bolster our grasp of their characteristics, and thus aid the community devise more robust solutions. To this end, we performed extensive research and analysis into 311M records containing 77M unique real-world URLs that were submitted to VirusTotal from Dec 2019 to Jan 2020. From this dataset, 2.6M suspicious campaigns were identified based on their attached metadata, of which 77,810 were doubly verified as malicious. Using the 38.1M records and 9.9M URLs within these malicious campaigns, we provide varied insights such as their targeted victim brands as well as URL sizes and heterogeneity. Some surprising findings were observed, such as detection rates falling to just 13.27% for campaigns that employ more than 100 unique URLs. The paper concludes with several case-studies that illustrate the common malicious techniques employed by attackers to imperil users and circumvent defences.
Abstract:Federated learning (FL) and split learning (SL) are state-of-the-art distributed machine learning techniques to enable machine learning training without accessing raw data on clients or end devices. However, their \emph{comparative training performance} under real-world resource-restricted Internet of Things (IoT) device settings, e.g., Raspberry Pi, remains barely studied, which, to our knowledge, have not yet been evaluated and compared, rendering inconvenient reference for practitioners. This work firstly provides empirical comparisons of FL and SL in real-world IoT settings regarding (i) learning performance with heterogeneous data distributions and (ii) on-device execution overhead. Our analyses in this work demonstrate that the learning performance of SL is better than FL under an imbalanced data distribution but worse than FL under an extreme non-IID data distribution. Recently, FL and SL are combined to form splitfed learning (SFL) to leverage each of their benefits (e.g., parallel training of FL and lightweight on-device computation requirement of SL). This work then considers FL, SL, and SFL, and mount them on Raspberry Pi devices to evaluate their performance, including training time, communication overhead, power consumption, and memory usage. Besides evaluations, we apply two optimizations. Firstly, we generalize SFL by carefully examining the possibility of a hybrid type of model training at the server-side. The generalized SFL merges sequential (dependent) and parallel (independent) processes of model training and is thus beneficial for a system with large-scaled IoT devices, specifically at the server-side operations. Secondly, we propose pragmatic techniques to substantially reduce the communication overhead by up to four times for the SL and (generalized) SFL.
Abstract:Artificial intelligence (AI) has been applied in phishing email detection. Typically, it requires rich email data from a collection of sources, and the data usually contains private information that needs to be preserved. So far, AI techniques are solely focusing on centralized data training that eventually accesses sensitive raw email data from the collected data repository. Thus, a privacy-friendly AI technique such as federated learning (FL) is a desideratum. FL enables learning over distributed email datasets to protect their privacy without the requirement of accessing them during the learning in a distributed computing framework. This work, to the best of our knowledge, is the first to investigate the applicability of training email anti-phishing model via FL. Building upon the Recurrent Convolutional Neural Network for phishing email detection, we comprehensively measure and evaluate the FL-entangled learning performance under various settings, including balanced and imbalanced data distribution among clients, scalability, communication overhead, and transfer learning. Our results positively corroborate comparable performance statistics of FL in phishing email detection to centralized learning. As a trade-off to privacy and distributed learning, FL has a communication overhead of 0.179 GB per global epoch per its clients. Our measurement-based results find that FL is suitable for practical scenarios, where data size variation, including the ratio of phishing to legitimate email samples, among the clients, are present. In all these scenarios, FL shows a similar performance of testing accuracy of around 98%. Besides, we demonstrate the integration of the newly joined clients with time in FL via transfer learning to improve the client-level performance. The transfer learning-enabled training results in the improvement of the testing accuracy by up to 2.6% and fast convergence.
Abstract:Image spam emails are often used to evade text-based spam filters that detect spam emails with their frequently used keywords. In this paper, we propose a new image spam email detection tool called DeepCapture using a convolutional neural network (CNN) model. There have been many efforts to detect image spam emails, but there is a significant performance degrade against entirely new and unseen image spam emails due to overfitting during the training phase. To address this challenging issue, we mainly focus on developing a more robust model to address the overfitting problem. Our key idea is to build a CNN-XGBoost framework consisting of eight layers only with a large number of training samples using data augmentation techniques tailored towards the image spam detection task. To show the feasibility of DeepCapture, we evaluate its performance with publicly available datasets consisting of 6,000 spam and 2,313 non-spam image samples. The experimental results show that DeepCapture is capable of achieving an F1-score of 88%, which has a 6% improvement over the best existing spam detection model CNN-SVM with an F1-score of 82%. Moreover, DeepCapture outperformed existing image spam detection solutions against new and unseen image datasets.
Abstract:This work is the first attempt to evaluate and compare felderated learning (FL) and split neural networks (SplitNN) in real-world IoT settings in terms of learning performance and device implementation overhead. We consider a variety of datasets, different model architectures, multiple clients, and various performance metrics. For learning performance, which is specified by the model accuracy and convergence speed metrics, we empirically evaluate both FL and SplitNN under different types of data distributions such as imbalanced and non-independent and identically distributed (non-IID) data. We show that the learning performance of SplitNN is better than FL under an imbalanced data distribution, but worse than FL under an extreme non-IID data distribution. For implementation overhead, we end-to-end mount both FL and SplitNN on Raspberry Pis, and comprehensively evaluate overheads including training time, communication overhead under the real LAN setting, power consumption and memory usage. Our key observations are that under IoT scenario where the communication traffic is the main concern, the FL appears to perform better over SplitNN because FL has the significantly lower communication overhead compared with SplitNN, which empirically corroborate previous statistical analysis. In addition, we reveal several unrecognized limitations about SplitNN, forming the basis for future research.
Abstract:A new collaborative learning, called split learning, was recently introduced, aiming to protect user data privacy without revealing raw input data to a server. It collaboratively runs a deep neural network model where the model is split into two parts, one for the client and the other for the server. Therefore, the server has no direct access to raw data processed at the client. Until now, the split learning is believed to be a promising approach to protect the client's raw data; for example, the client's data was protected in healthcare image applications using 2D convolutional neural network (CNN) models. However, it is still unclear whether the split learning can be applied to other deep learning models, in particular, 1D CNN. In this paper, we examine whether split learning can be used to perform privacy-preserving training for 1D CNN models. To answer this, we first design and implement an 1D CNN model under split learning and validate its efficacy in detecting heart abnormalities using medical ECG data. We observed that the 1D CNN model under split learning can achieve the same accuracy of 98.9\% like the original (non-split) model. However, our evaluation demonstrates that split learning may fail to protect the raw data privacy on 1D CNN models. To address the observed privacy leakage in split learning, we adopt two privacy leakage mitigation techniques: 1) adding more hidden layers to the client side and 2) applying differential privacy. Although those mitigation techniques are helpful in reducing privacy leakage, they have a significant impact on model accuracy. Hence, based on those results, we conclude that split learning alone would not be sufficient to maintain the confidentiality of raw sequential data in 1D CNN models.