Abstract:This paper presents a differentially private approach to Kaplan-Meier estimation that achieves accurate survival probability estimates while safeguarding individual privacy. The Kaplan-Meier estimator is widely used in survival analysis to estimate survival functions over time, yet applying it to sensitive datasets, such as clinical records, risks revealing private information. To address this, we introduce a novel algorithm that applies time-indexed Laplace noise, dynamic clipping, and smoothing to produce a privacy-preserving survival curve while maintaining the cumulative structure of the Kaplan-Meier estimator. By scaling noise over time, the algorithm accounts for decreasing sensitivity as fewer individuals remain at risk, while dynamic clipping and smoothing prevent extreme values and reduce fluctuations, preserving the natural shape of the survival curve. Our results, evaluated on the NCCTG lung cancer dataset, show that the proposed method effectively lowers root mean squared error (RMSE) and enhances accuracy across privacy budgets ($\epsilon$). At $\epsilon = 10$, the algorithm achieves an RMSE as low as 0.04, closely approximating non-private estimates. Additionally, membership inference attacks reveal that higher $\epsilon$ values (e.g., $\epsilon \geq 6$) significantly reduce influential points, particularly at higher thresholds, lowering susceptibility to inference attacks. These findings confirm that our approach balances privacy and utility, advancing privacy-preserving survival analysis.
Abstract:We study collaborative learning systems in which the participants are competitors who will defect from the system if they lose revenue by collaborating. As such, we frame the system as a duopoly of competitive firms who are each engaged in training machine-learning models and selling their predictions to a market of consumers. We first examine a fully collaborative scheme in which both firms share their models with each other and show that this leads to a market collapse with the revenues of both firms going to zero. We next show that one-sided collaboration in which only the firm with the lower-quality model shares improves the revenue of both firms. Finally, we propose a more equitable, *defection-free* scheme in which both firms share with each other while losing no revenue, and we show that our algorithm converges to the Nash bargaining solution.
Abstract:Collaboration between different data centers is often challenged by heterogeneity across sites. To account for the heterogeneity, the state-of-the-art method is to re-weight the covariate distributions in each site to match the distribution of the target population. Nevertheless, this method could easily fail when a certain site couldn't cover the entire population. Moreover, it still relies on the concept of traditional meta-analysis after adjusting for the distribution shift. In this work, we propose a collaborative inverse propensity score weighting estimator for causal inference with heterogeneous data. Instead of adjusting the distribution shift separately, we use weighted propensity score models to collaboratively adjust for the distribution shift. Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases. To account for the vulnerable density estimation, we further discuss the double machine method and show the possibility of using nonparametric density estimation with d<8 and a flexible machine learning method to guarantee asymptotic normality. We propose a federated learning algorithm to collaboratively train the outcome model while preserving privacy. Using synthetic and real datasets, we demonstrate the advantages of our method.
Abstract:Acquiring high-quality training data is essential for current machine learning models. Data markets provide a way to increase the supply of data, particularly in data-scarce domains such as healthcare, by incentivizing potential data sellers to join the market. A major challenge for a data buyer in such a market is selecting the most valuable data points from a data seller. Unlike prior work in data valuation, which assumes centralized data access, we propose a federated approach to the data selection problem that is inspired by linear experimental design. Our proposed data selection method achieves lower prediction error without requiring labeled validation data and can be optimized in a fast and federated procedure. The key insight of our work is that a method that directly estimates the benefit of acquiring data for test set prediction is particularly compatible with a decentralized market setting.
Abstract:We present Scaff-PD, a fast and communication-efficient algorithm for distributionally robust federated learning. Our approach improves fairness by optimizing a family of distributionally robust objectives tailored to heterogeneous clients. We leverage the special structure of these objectives, and design an accelerated primal dual (APD) algorithm which uses bias corrected local steps (as in Scaffold) to achieve significant gains in communication efficiency and convergence speed. We evaluate Scaff-PD on several benchmark datasets and demonstrate its effectiveness in improving fairness and robustness while maintaining competitive accuracy. Our results suggest that Scaff-PD is a promising approach for federated learning in resource-constrained and heterogeneous settings.
Abstract:Clustering clients with similar objectives and learning a model per cluster is an intuitive and interpretable approach to personalization in federated learning. However, doing so with provable and optimal guarantees has remained an open challenge. In this work, we formalize personalized federated learning as a stochastic optimization problem where the stochastic gradients on a client may correspond to one of $K$ distributions. In such a setting, we show that using i) a simple thresholding-based clustering algorithm, and ii) local client gradients obtains optimal convergence guarantees. In fact, our rates asymptotically match those obtained if we knew the true underlying clustering of the clients. Furthermore, our algorithms are provably robust in the Byzantine setting where some fraction of the gradients are corrupted.
Abstract:For a federated learning model to perform well, it is crucial to have a diverse and representative dataset. However, the data contributors may only be concerned with the performance on a specific subset of the population, which may not reflect the diversity of the wider population. This creates a tension between the principal (the FL platform designer) who cares about global performance and the agents (the data collectors) who care about local performance. In this work, we formulate this tension as a game between the principal and multiple agents, and focus on the linear experiment design problem to formally study their interaction. We show that the statistical criterion used to quantify the diversity of the data, as well as the choice of the federated learning algorithm used, has a significant effect on the resulting equilibrium. We leverage this to design simple optimal federated learning mechanisms that encourage data collectors to contribute data representative of the global population, thereby maximizing global performance.
Abstract:Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning since it can be easily applied as a post-processing step to already trained models. In this paper, we extend conformal prediction to the federated learning setting. The main challenge we face is data heterogeneity across the clients - this violates the fundamental tenet of exchangeability required for conformal prediction. We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction (FCP) framework. We show FCP enjoys rigorous theoretical guarantees and excellent empirical performance on several computer vision and medical imaging datasets. Our results demonstrate a practical approach to incorporating meaningful uncertainty quantification in distributed and heterogeneous environments. We provide code used in our experiments https://github.com/clu5/federated-conformal.
Abstract:The creator economy has revolutionized the way individuals can profit through online platforms. In this paper, we initiate the study of online learning in the creator economy by modeling the creator economy as a three-party game between the users, platform, and content creators, with the platform interacting with the content creator under a principal-agent model through contracts to encourage better content. Additionally, the platform interacts with the users to recommend new content, receive an evaluation, and ultimately profit from the content, which can be modeled as a recommender system. Our study aims to explore how the platform can jointly optimize the contract and recommender system to maximize the utility in an online learning fashion. We primarily analyze and compare two families of contracts: return-based contracts and feature-based contracts. Return-based contracts pay the content creator a fraction of the reward the platform gains. In contrast, feature-based contracts pay the content creator based on the quality or features of the content, regardless of the reward the platform receives. We show that under smoothness assumptions, the joint optimization of return-based contracts and recommendation policy provides a regret $\Theta(T^{2/3})$. For the feature-based contract, we introduce a definition of intrinsic dimension $d$ to characterize the hardness of learning the contract and provide an upper bound on the regret $\mathcal{O}(T^{(d+1)/(d+2)})$. The upper bound is tight for the linear family.
Abstract:Federated Learning (FL) is a novel approach enabling several clients holding sensitive data to collaboratively train machine learning models, without centralizing data. The cross-silo FL setting corresponds to the case of few ($2$--$50$) reliable clients, each holding medium to large datasets, and is typically found in applications such as healthcare, finance, or industry. While previous works have proposed representative datasets for cross-device FL, few realistic healthcare cross-silo FL datasets exist, thereby slowing algorithmic research in this critical application. In this work, we propose a novel cross-silo dataset suite focused on healthcare, FLamby (Federated Learning AMple Benchmark of Your cross-silo strategies), to bridge the gap between theory and practice of cross-silo FL. FLamby encompasses 7 healthcare datasets with natural splits, covering multiple tasks, modalities, and data volumes, each accompanied with baseline training code. As an illustration, we additionally benchmark standard FL algorithms on all datasets. Our flexible and modular suite allows researchers to easily download datasets, reproduce results and re-use the different components for their research. FLamby is available at~\url{www.github.com/owkin/flamby}.