Abstract:World models play a crucial role in decision-making within embodied environments, enabling cost-free explorations that would otherwise be expensive in the real world. To facilitate effective decision-making, world models must be equipped with strong generalizability to support faithful imagination in out-of-distribution (OOD) regions and provide reliable uncertainty estimation to assess the credibility of the simulated experiences, both of which present significant challenges for prior scalable approaches. This paper introduces WHALE, a framework for learning generalizable world models, consisting of two key techniques: behavior-conditioning and retracing-rollout. Behavior-conditioning addresses the policy distribution shift, one of the primary sources of the world model generalization error, while retracing-rollout enables efficient uncertainty estimation without the necessity of model ensembles. These techniques are universal and can be combined with any neural network architecture for world model learning. Incorporating these two techniques, we present Whale-ST, a scalable spatial-temporal transformer-based world model with enhanced generalizability. We demonstrate the superiority of Whale-ST in simulation tasks by evaluating both value estimation accuracy and video generation fidelity. Additionally, we examine the effectiveness of our uncertainty estimation technique, which enhances model-based policy optimization in fully offline scenarios. Furthermore, we propose Whale-X, a 414M parameter world model trained on 970K trajectories from Open X-Embodiment datasets. We show that Whale-X exhibits promising scalability and strong generalizability in real-world manipulation scenarios using minimal demonstrations.
Abstract:High-speed train (HST) has garnered significant attention from both academia and industry due to the rapid development of railways worldwide. Millimeter wave (mmWave) communication, known for its large bandwidth is an effective way to address performance bottlenecks in cellular network based HST wireless communication systems. However, mmWave signals suffer from significant path loss when traversing carriage, posing substantial challenges to cellular networks. To address this issue, reconfigurable intelligent surfaces (RIS) have gained considerable interest for its ability to enhance cell coverage by reflecting signals toward receiver. Ensuring communication reliability, a core performance indicators of ultra-reliable and low-latency communications (URLLC) in fifth-generation systems, is crucial for providing steady and reliable data transmissions along railways, particularly for delivering safety and control messages and monitoring HST signaling information. In this paper, we investigate a refracting RIS-assisted multi-user multiple-input single-output URLLC system in mmWave HST communications. We propose a sum rate maximization problem, subject to base station beamforming constraint, as well as refracting RIS discrete phase shifts and reliability constraints. To solve this optimization problem, we design a joint optimization algorithm based on alternating optimization method. This involves decoupling the original optimization problem into active beamforming design and packet error probability optimization subproblem, and discrete phase shift design subproblems. These subproblems are addressed exploiting Lagrangian dual method and the local search method, respectively. Simulation results demonstrate the fast convergence of the proposed algorithm and highlight the benefits of refracting RIS adoption for sum rate improvement in mmWave HST networks.
Abstract:Dual-energy computed tomography (DECT) has been widely used to obtain quantitative elemental composition of imaged subjects for personalized and precise medical diagnosis. Compared with DECT leveraging advanced X-ray source and/or detector technologies, the use of the sequential-scanning data acquisition scheme to implement DECT may make a broader impact on clinical practice because this scheme requires no specialized hardware designs and can be directly implemented into conventional CT systems. However, since the concentration of iodinated contrast agent in the imaged subject varies over time, sequentially scanned data sets acquired at two tube potentials are temporally inconsistent. As existing material basis image reconstruction approaches assume that the data sets acquired at two tube potentials are temporally consistent, the violation of this assumption results in inaccurate quantification of material concentration. In this work, we developed sequential-scanning DECT imaging using high temporal resolution image reconstruction and error-compensated material basis image generation, ACCELERATION in short, to address the technical challenge induced by temporal inconsistency of sequentially scanned data sets and improve quantification accuracy of material concentration in sequential-scanning DECT. ACCELERATION has been validated and evaluated using numerical simulation data sets generated from clinical human subject exams and experimental human subject studies. Results demonstrated the improvement of quantification accuracy and image quality using ACCELERATION.
Abstract:Combining offline and online reinforcement learning (RL) techniques is indeed crucial for achieving efficient and safe learning where data acquisition is expensive. Existing methods replay offline data directly in the online phase, resulting in a significant challenge of data distribution shift and subsequently causing inefficiency in online fine-tuning. To address this issue, we introduce an innovative approach, \textbf{E}nergy-guided \textbf{DI}ffusion \textbf{S}ampling (EDIS), which utilizes a diffusion model to extract prior knowledge from the offline dataset and employs energy functions to distill this knowledge for enhanced data generation in the online phase. The theoretical analysis demonstrates that EDIS exhibits reduced suboptimality compared to solely utilizing online data or directly reusing offline data. EDIS is a plug-in approach and can be combined with existing methods in offline-to-online RL setting. By implementing EDIS to off-the-shelf methods Cal-QL and IQL, we observe a notable 20% average improvement in empirical performance on MuJoCo, AntMaze, and Adroit environments. Code is available at \url{https://github.com/liuxhym/EDIS}.
Abstract:Imitation learning aims to mimic the behavior of experts without explicit reward signals. Passive imitation learning methods which use static expert datasets typically suffer from compounding error, low sample efficiency, and high hyper-parameter sensitivity. In contrast, active imitation learning methods solicit expert interventions to address the limitations. However, recent active imitation learning methods are designed based on human intuitions or empirical experience without theoretical guarantee. In this paper, we propose a novel active imitation learning framework based on a teacher-student interaction model, in which the teacher's goal is to identify the best teaching behavior and actively affect the student's learning process. By solving the optimization objective of this framework, we propose a practical implementation, naming it AdapMen. Theoretical analysis shows that AdapMen can improve the error bound and avoid compounding error under mild conditions. Experiments on the MetaDrive benchmark and Atari 2600 games validate our theoretical analysis and show that our method achieves near-expert performance with much less expert involvement and total sampling steps than previous methods. The code is available at https://github.com/liuxhym/AdapMen.