Abstract:Semi-supervised learning is increasingly popular in medical image segmentation due to its ability to leverage large amounts of unlabeled data to extract additional information. However, most existing semi-supervised segmentation methods focus only on extracting information from unlabeled data. In this paper, we propose a novel Dual KMax UX-Net framework that leverages labeled data to guide the extraction of information from unlabeled data. Our approach is based on a mutual learning strategy that incorporates two modules: 3D UX-Net as our backbone meta-architecture and KMax decoder to enhance the segmentation performance. Extensive experiments on the Atrial Segmentation Challenge dataset have shown that our method can significantly improve performance by merging unlabeled data. Meanwhile, our framework outperforms state-of-the-art semi-supervised learning methods on 10\% and 20\% labeled settings. Code located at: https://github.com/Rows21/DK-UXNet.
Abstract:Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
Abstract:Much progress has been made in the deep neural network (DNN) based diagnosis of mass lesions breast ultrasound (BUS) images. However, the non-mass lesion is less investigated because of the limited data. Based on the insight that mass data is sufficient and shares the same knowledge structure with non-mass data of identifying the malignancy of a lesion based on the ultrasound image, we propose a novel transfer learning framework to enhance the generalizability of the DNN model for non-mass BUS with the help of mass BUS. Specifically, we train a shared DNN with combined non-mass and mass data. With the prior of different marginal distributions in input and output space, we employ two domain alignment strategies in the proposed transfer learning framework with the insight of capturing domain-specific distribution to address the issue of domain shift. Moreover, we propose a cross-domain semantic-preserve data generation module called CrossMix to recover the missing distribution between non-mass and mass data that is not presented in training data. Experimental results on an in-house dataset demonstrate that the DNN model trained with combined data by our framework achieves a 10% improvement in AUC on the malignancy prediction task of non-mass BUS compared to training directly on non-mass data.