Abstract:Predicting future bus trip chains for an existing user is of great significance for operators of public transit systems. Existing methods always treat this task as a time-series prediction problem, but the 1-dimensional time series structure cannot express the complex relationship between trips. To better capture the inherent patterns in bus travel behavior, this paper proposes a novel approach that synthesizes future bus trip chains based on those from similar days. Key similarity patterns are defined and tested using real-world data, and a similarity function is then developed to capture these patterns. Afterwards, a graph is constructed where each day is represented as a node and edge weight reflects the similarity between days. Besides, the trips on a given day can be regarded as labels for each node, transferring the bus trip chain prediction problem to a semi-supervised classification problem on a graph. To address this, we propose several methods and validate them on a real-world dataset of 10000 bus users, achieving state-of-the-art prediction results. Analyzing the parameters of similarity function reveals some interesting bus usage patterns, allowing us can to cluster bus users into three types: repeat-dominated, evolve-dominate and repeat-evolve balanced. In summary, our work demonstrates the effectiveness of similarity-based prediction for bus trip chains and provides a new perspective for analyzing individual bus travel patterns. The code for our prediction model is publicly available.
Abstract:In the context of rail transit operations, real-time passenger flow prediction is essential; however, most models primarily focus on normal conditions, with limited research addressing incident situations. There are several intrinsic challenges associated with prediction during incidents, such as a lack of interpretability and data scarcity. To address these challenges, we propose a two-stage method that separates predictions under normal conditions and the causal effects of incidents. First, a normal prediction model is trained using data from normal situations. Next, the synthetic control method is employed to identify the causal effects of incidents, combined with placebo tests to determine significant levels of these effects. The significant effects are then utilized to train a causal effect prediction model, which can forecast the impact of incidents based on features of the incidents and passenger flows. During the prediction phase, the results from both the normal situation model and the causal effect prediction model are integrated to generate final passenger flow predictions during incidents. Our approach is validated using real-world data, demonstrating improved accuracy. Furthermore, the two-stage methodology enhances interpretability. By analyzing the causal effect prediction model, we can identify key influencing factors related to the effects of incidents and gain insights into their underlying mechanisms. Our work can assist subway system managers in estimating passenger flow affected by incidents and enable them to take proactive measures. Additionally, it can deepen researchers' understanding of the impact of incidents on subway passenger flows.
Abstract:Bike-sharing is an environmentally friendly shared mobility mode, but its self-loop phenomenon, where bikes are returned to the same station after several time usage, significantly impacts equity in accessing its services. Therefore, this study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework to assess socioeconomic features and geospatial location's impact on the self-loop phenomenon at metro stations and street scales. The results reveal that bike-sharing self-loop intensity exhibits significant spatial lag effect at street scale and is positively associated with residential land use. Marginal treatment effects of residential land use is higher on streets with middle-aged residents, high fixed employment, and low car ownership. The multimodal public transit condition reveals significant positive marginal treatment effects at both scales. To enhance bike-sharing cooperation, we advocate augmenting bicycle availability in areas with high metro usage and low bus coverage, alongside implementing adaptable redistribution strategies.
Abstract:Collaborative perception in autonomous driving significantly enhances the perception capabilities of individual agents. Immutable heterogeneity in collaborative perception, where agents have different and fixed perception networks, presents a major challenge due to the semantic gap in their exchanged intermediate features without modifying the perception networks. Most existing methods bridge the semantic gap through interpreters. However, they either require training a new interpreter for each new agent type, limiting extensibility, or rely on a two-stage interpretation via an intermediate standardized semantic space, causing cumulative semantic loss. To achieve both extensibility in immutable heterogeneous scenarios and low-loss feature interpretation, we propose PolyInter, a polymorphic feature interpreter. It contains an extension point through which emerging new agents can seamlessly integrate by overriding only their specific prompts, which are learnable parameters intended to guide the interpretation, while reusing PolyInter's remaining parameters. By leveraging polymorphism, our design ensures that a single interpreter is sufficient to accommodate diverse agents and interpret their features into the ego agent's semantic space. Experiments conducted on the OPV2V dataset demonstrate that PolyInter improves collaborative perception precision by up to 11.1% compared to SOTA interpreters, while comparable results can be achieved by training only 1.4% of PolyInter's parameters when adapting to new agents.
Abstract:Short-term traffic volume prediction is crucial for intelligent transportation system and there are many researches focusing on this field. However, most of these existing researches concentrated on refining model architecture and ignored amount of training data. Therefore, there remains a noticeable gap in thoroughly exploring the effect of augmented dataset, especially extensive historical data in training. In this research, two datasets containing taxi and bike usage spanning over eight years in New York were used to test such effects. Experiments were conducted to assess the precision of models trained with data in the most recent 12, 24, 48, and 96 months. It was found that the training set encompassing 96 months, at times, resulted in diminished accuracy, which might be owing to disparities between historical traffic patterns and present ones. An analysis was subsequently undertaken to discern potential sources of inconsistent patterns, which may include both covariate shift and concept shift. To address these shifts, we proposed an innovative approach that aligns covariate distributions using a weighting scheme to manage covariate shift, coupled with an environment aware learning method to tackle the concept shift. Experiments based on real word datasets demonstrate the effectiveness of our method which can significantly decrease testing errors and ensure an improvement in accuracy when training with large-scale historical data. As far as we know, this work is the first attempt to assess the impact of contiguously expanding training dataset on the accuracy of traffic prediction models. Besides, our training method is able to be incorporated into most existing short-term traffic prediction models and make them more suitable for long term historical training dataset.
Abstract:Accurate short-term passenger flow prediction of subway stations plays a vital role in enabling subway station personnel to proactively address changes in passenger volume. Despite existing literature in this field, there is a lack of research on effectively integrating features from different periods, particularly intra-period and inter-period features, for subway station passenger flow prediction. In this paper, we propose a novel model called \textbf{M}uti \textbf{P}eriod \textbf{S}patial \textbf{T}emporal \textbf{N}etwork \textbf{MPSTN}) that leverages features from different periods by transforming one-dimensional time series data into two-dimensional matrices based on periods. The folded matrices exhibit structural characteristics similar to images, enabling the utilization of image processing techniques, specifically convolutional neural networks (CNNs), to integrate features from different periods. Therefore, our MPSTN model incorporates a CNN module to extract temporal information from different periods and a graph neural network (GNN) module to integrate spatial information from different stations. We compared our approach with various state-of-the-art methods for spatiotemporal data prediction using a publicly available dataset and achieved minimal prediction errors. The code for our model is publicly available in the following repository: https://github.com/xiannanhuang/MPSTN
Abstract:By sharing complementary perceptual information, multi-agent collaborative perception fosters a deeper understanding of the environment. Recent studies on collaborative perception mostly utilize CNNs or Transformers to learn feature representation and fusion in the spatial dimension, which struggle to handle long-range spatial-temporal features under limited computing and communication resources. Holistically modeling the dependencies over extensive spatial areas and extended temporal frames is crucial to enhancing feature quality. To this end, we propose a resource efficient cross-agent spatial-temporal collaborative state space model (SSM), named CollaMamba. Initially, we construct a foundational backbone network based on spatial SSM. This backbone adeptly captures positional causal dependencies from both single-agent and cross-agent views, yielding compact and comprehensive intermediate features while maintaining linear complexity. Furthermore, we devise a history-aware feature boosting module based on temporal SSM, extracting contextual cues from extended historical frames to refine vague features while preserving low overhead. Extensive experiments across several datasets demonstrate that CollaMamba outperforms state-of-the-art methods, achieving higher model accuracy while reducing computational and communication overhead by up to 71.9% and 1/64, respectively. This work pioneers the exploration of the Mamba's potential in collaborative perception. The source code will be made available.
Abstract:The highly abstract nature of image aesthetics perception (IAP) poses significant challenge for current multimodal large language models (MLLMs). The lack of human-annotated multi-modality aesthetic data further exacerbates this dilemma, resulting in MLLMs falling short of aesthetics perception capabilities. To address the above challenge, we first introduce a comprehensively annotated Aesthetic Multi-Modality Instruction Tuning (AesMMIT) dataset, which serves as the footstone for building multi-modality aesthetics foundation models. Specifically, to align MLLMs with human aesthetics perception, we construct a corpus-rich aesthetic critique database with 21,904 diverse-sourced images and 88K human natural language feedbacks, which are collected via progressive questions, ranging from coarse-grained aesthetic grades to fine-grained aesthetic descriptions. To ensure that MLLMs can handle diverse queries, we further prompt GPT to refine the aesthetic critiques and assemble the large-scale aesthetic instruction tuning dataset, i.e. AesMMIT, which consists of 409K multi-typed instructions to activate stronger aesthetic capabilities. Based on the AesMMIT database, we fine-tune the open-sourced general foundation models, achieving multi-modality Aesthetic Expert models, dubbed AesExpert. Extensive experiments demonstrate that the proposed AesExpert models deliver significantly better aesthetic perception performances than the state-of-the-art MLLMs, including the most advanced GPT-4V and Gemini-Pro-Vision. Source data will be available at https://github.com/yipoh/AesExpert.
Abstract:Dialog Structure Induction (DSI) is the task of inferring the latent dialog structure (i.e., a set of dialog states and their temporal transitions) of a given goal-oriented dialog. It is a critical component for modern dialog system design and discourse analysis. Existing DSI approaches are often purely data-driven, deploy models that infer latent states without access to domain knowledge, underperform when the training corpus is limited/noisy, or have difficulty when test dialogs exhibit distributional shifts from the training domain. This work explores a neural-symbolic approach as a potential solution to these problems. We introduce Neural Probabilistic Soft Logic Dialogue Structure Induction (NEUPSL DSI), a principled approach that injects symbolic knowledge into the latent space of a generative neural model. We conduct a thorough empirical investigation on the effect of NEUPSL DSI learning on hidden representation quality, few-shot learning, and out-of-domain generalization performance. Over three dialog structure induction datasets and across unsupervised and semi-supervised settings for standard and cross-domain generalization, the injection of symbolic knowledge using NEUPSL DSI provides a consistent boost in performance over the canonical baselines.
Abstract:In this report, we present the latest model of the Gemini family, Gemini 1.5 Pro, a highly compute-efficient multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. Gemini 1.5 Pro achieves near-perfect recall on long-context retrieval tasks across modalities, improves the state-of-the-art in long-document QA, long-video QA and long-context ASR, and matches or surpasses Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5 Pro's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 2.1 (200k) and GPT-4 Turbo (128k). Finally, we highlight surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.