Predicting future bus trip chains for an existing user is of great significance for operators of public transit systems. Existing methods always treat this task as a time-series prediction problem, but the 1-dimensional time series structure cannot express the complex relationship between trips. To better capture the inherent patterns in bus travel behavior, this paper proposes a novel approach that synthesizes future bus trip chains based on those from similar days. Key similarity patterns are defined and tested using real-world data, and a similarity function is then developed to capture these patterns. Afterwards, a graph is constructed where each day is represented as a node and edge weight reflects the similarity between days. Besides, the trips on a given day can be regarded as labels for each node, transferring the bus trip chain prediction problem to a semi-supervised classification problem on a graph. To address this, we propose several methods and validate them on a real-world dataset of 10000 bus users, achieving state-of-the-art prediction results. Analyzing the parameters of similarity function reveals some interesting bus usage patterns, allowing us can to cluster bus users into three types: repeat-dominated, evolve-dominate and repeat-evolve balanced. In summary, our work demonstrates the effectiveness of similarity-based prediction for bus trip chains and provides a new perspective for analyzing individual bus travel patterns. The code for our prediction model is publicly available.