The University of Manchester
Abstract:We consider the question of what properties a Machine Ethics system should have. This question is complicated by the existence of ethical dilemmas with no agreed upon solution. We provide an example to motivate why we do not believe falling back on the elicitation of values from stakeholders is sufficient to guarantee correctness of such systems. We go on to define two broad categories of ethical property that have arisen in our own work and present a challenge to the community to approach this question in a more systematic way.
Abstract:This paper describes (R)ules (o)f (T)he (R)oad (A)dvisor, an agent that provides recommended and possible actions to be generated from a set of human-level rules. We describe the architecture and design of RoTRA, both formally and with an example. Specifically, we use RoTRA to formalise and implement the UK "Rules of the Road", and describe how this can be incorporated into autonomous cars such that they can reason internally about obeying the rules of the road. In addition, the possible actions generated are annotated to indicate whether the rules state that the action must be taken or that they only recommend that the action should be taken, as per the UK Highway Code (Rules of The Road). The benefits of utilising this system include being able to adapt to different regulations in different jurisdictions; allowing clear traceability from rules to behaviour, and providing an external automated accountability mechanism that can check whether the rules were obeyed in some given situation. A simulation of an autonomous car shows, via a concrete example, how trust can be built by putting the autonomous vehicle through a number of scenarios which test the car's ability to obey the rules of the road. Autonomous cars that incorporate this system are able to ensure that they are obeying the rules of the road and external (legal or regulatory) bodies can verify that this is the case, without the vehicle or its manufacturer having to expose their source code or make their working transparent, thus allowing greater trust between car companies, jurisdictions, and the general public.
Abstract:Software engineering of modular robotic systems is a challenging task, however, verifying that the developed components all behave as they should individually and as a whole presents its own unique set of challenges. In particular, distinct components in a modular robotic system often require different verification techniques to ensure that they behave as expected. Ensuring whole system consistency when individual components are verified using a variety of techniques and formalisms is difficult. This paper discusses how to use compositional verification to integrate the various verification techniques that are applied to modular robotic software, using a First-Order Logic (FOL) contract that captures each component's assumptions and guarantees. These contracts can then be used to guide the verification of the individual components, be it by testing or the use of a formal method. We provide an illustrative example of an autonomous robot used in remote inspection. We also discuss a way of defining confidence for the verification associated with each component.
Abstract:The Curiosity rover is one of the most complex systems successfully deployed in a planetary exploration mission to date. It was sent by NASA to explore the surface of Mars and to identify potential signs of life. Even though it has limited autonomy on-board, most of its decisions are made by the ground control team. This hinders the speed at which the Curiosity reacts to its environment, due to the communication delays between Earth and Mars. Depending on the orbital position of both planets, it can take 4--24 minutes for a message to be transmitted between Earth and Mars. If the Curiosity were controlled autonomously, it would be able to perform its activities much faster and more flexibly. However, one of the major barriers to increased use of autonomy in such scenarios is the lack of assurances that the autonomous behaviour will work as expected. In this paper, we use a Robot Operating System (ROS) model of the Curiosity that is simulated in Gazebo and add an autonomous agent that is responsible for high-level decision-making. Then, we use a mixture of formal and non-formal techniques to verify the distinct system components (ROS nodes). This use of heterogeneous verification techniques is essential to provide guarantees about the nodes at different abstraction levels, and allows us to bring together relevant verification evidence to provide overall assurance.
Abstract:Increasingly sophisticated mathematical modelling processes from Machine Learning are being used to analyse complex data. However, the performance and explainability of these models within practical critical systems requires a rigorous and continuous verification of their safe utilisation. Working towards addressing this challenge, this paper presents a principled novel safety argument framework for critical systems that utilise deep neural networks. The approach allows various forms of predictions, e.g., future reliability of passing some demands, or confidence on a required reliability level. It is supported by a Bayesian analysis using operational data and the recent verification and validation techniques for deep learning. The prediction is conservative -- it starts with partial prior knowledge obtained from lifecycle activities and then determines the worst-case prediction. Open challenges are also identified.
Abstract:A computational system is called autonomous if it is able to make its own decisions, or take its own actions, without human supervision or control. The capability and spread of such systems have reached the point where they are beginning to touch much of everyday life. However, regulators grapple with how to deal with autonomous systems, for example how could we certify an Unmanned Aerial System for autonomous use in civilian airspace? We here analyse what is needed in order to provide verified reliable behaviour of an autonomous system, analyse what can be done as the state-of-the-art in automated verification, and propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators. Case studies in seven distinct domains illustrate the article.
Abstract:Ensuring that autonomous space robot control software behaves as it should is crucial, particularly as software failure in space often equates to mission failure and could potentially endanger nearby astronauts and costly equipment. To minimise mission failure caused by software errors, we can utilise a variety of tools and techniques to verify that the software behaves as intended. In particular, distinct nodes in a robotic system often require different verification techniques to ensure that they behave as expected. This paper introduces a method for integrating the various verification techniques that are applied to robotic software, via a First-Order Logic (FOL) specification that captures each node's assumptions and guarantees. These FOL specifications are then used to guide the verification of the individual nodes, be it by testing or the use of a formal method. We also outline a way of measuring our confidence in the verification of the entire system in terms of the verification techniques used.
Abstract:The battery is a key component of autonomous robots. Its performance limits the robot's safety and reliability. Unlike liquid-fuel, a battery, as a chemical device, exhibits complicated features, including (i) capacity fade over successive recharges and (ii) increasing discharge rate as the state of charge (SOC) goes down for a given power demand. Existing formal verification studies of autonomous robots, when considering energy constraints, formalise the energy component in a generic manner such that the battery features are overlooked. In this paper, we model an unmanned aerial vehicle (UAV) inspection mission on a wind farm and via probabilistic model checking in PRISM show (i) how the battery features may affect the verification results significantly in practical cases; and (ii) how the battery features, together with dynamic environments and battery safety strategies, jointly affect the verification results. Potential solutions to explicitly integrate battery prognostics and health management (PHM) with formal verification of autonomous robots are also discussed to motivate future work.
Abstract:Robots are increasingly used to carry out critical missions in extreme environments that are hazardous for humans. This requires a high degree of operational autonomy under uncertain conditions, and poses new challenges for assuring the robot's safety and reliability. In this paper, we develop a framework for probabilistic model checking on a layered Markov model to verify the safety and reliability requirements of such robots, both at pre-mission stage and during runtime. Two novel estimators based on conservative Bayesian inference and imprecise probability model with sets of priors are introduced to learn the unknown transition parameters from operational data. We demonstrate our approach using data from a real-world deployment of unmanned underwater vehicles in extreme environments.
Abstract:Robotic systems are multi-dimensional entities, combining both hardware and software, that are heavily dependent on, and influenced by, interactions with the real world. They can be variously categorised as embedded, cyberphysical, real-time, hybrid, adaptive and even autonomous systems, with a typical robotic system being likely to contain all of these aspects. The techniques for developing and verifying each of these system varieties are often quite distinct. This, together with the sheer complexity of robotic systems, leads us to argue that diverse formal techniques must be integrated in order to develop, verify, and provide certification evidence for, robotic systems. Furthermore, we propose the fast evolving field of robotics as an ideal catalyst for the advancement of integrated formal methods research, helping to drive the field in new and exciting directions and shedding light on the development of large-scale, dynamic, complex systems.