Abstract:Mercari is the largest C2C e-commerce marketplace in Japan, having more than 20 million active monthly users. Search being the fundamental way to discover desired items, we have always had a substantial amount of data with implicit feedback. Although we actively take advantage of that to provide the best service for our users, the correlation of implicit feedback for such tasks as image quality assessment is not trivial. Many traditional lines of research in Machine Learning (ML) are similarly motivated by the insatiable appetite of Deep Learning (DL) models for well-labelled training data. Weak supervision is about leveraging higher-level and/or noisier supervision over unlabeled data. Large Language Models (LLMs) are being actively studied and used for data labelling tasks. We present how we leverage a Chain-of-Thought (CoT) to enable LLM to produce image aesthetics labels that correlate well with human behavior in e-commerce settings. Leveraging LLMs is more cost-effective compared to explicit human judgment, while significantly improving the explainability of deep image quality evaluation which is highly important for customer journey optimization at Mercari. We propose a cost-efficient LLM-driven approach for assessing and predicting image quality in e-commerce settings, which is very convenient for proof-of-concept testing. We show that our LLM-produced labels correlate with user behavior on Mercari. Finally, we show our results from an online experimentation, where we achieved a significant growth in sales on the web platform.
Abstract:Video Snapshot Compressive Imaging (SCI) uses a low-speed 2D camera to capture high-speed scenes as snapshot compressed measurements, followed by a reconstruction algorithm to retrieve the high-speed video frames. The fast evolving mobile devices and existing high-performance video SCI reconstruction algorithms motivate us to develop mobile reconstruction methods for real-world applications. Yet, it is still challenging to deploy previous reconstruction algorithms on mobile devices due to the complex inference process, let alone real-time mobile reconstruction. To the best of our knowledge, there is no video SCI reconstruction model designed to run on the mobile devices. Towards this end, in this paper, we present an effective approach for video SCI reconstruction, dubbed MobileSCI, which can run at real-time speed on the mobile devices for the first time. Specifically, we first build a U-shaped 2D convolution-based architecture, which is much more efficient and mobile-friendly than previous state-of-the-art reconstruction methods. Besides, an efficient feature mixing block, based on the channel splitting and shuffling mechanisms, is introduced as a novel bottleneck block of our proposed MobileSCI to alleviate the computational burden. Finally, a customized knowledge distillation strategy is utilized to further improve the reconstruction quality. Extensive results on both simulated and real data show that our proposed MobileSCI can achieve superior reconstruction quality with high efficiency on the mobile devices. Particularly, we can reconstruct a 256 X 256 X 8 snapshot compressed measurement with real-time performance (about 35 FPS) on an iPhone 15. Code is available at https://github.com/mcao92/MobileSCI.
Abstract:Video Snapshot Compressive Imaging (SCI) aims to use a low-speed 2D camera to capture high-speed scene as snapshot compressed measurements, followed by a reconstruction algorithm to reconstruct the high-speed video frames. State-of-the-art (SOTA) deep learning-based algorithms have achieved impressive performance, yet with heavy computational workload. Network quantization is a promising way to reduce computational cost. However, a direct low-bit quantization will bring large performance drop. To address this challenge, in this paper, we propose a simple low-bit quantization framework (dubbed Q-SCI) for the end-to-end deep learning-based video SCI reconstruction methods which usually consist of a feature extraction, feature enhancement, and video reconstruction module. Specifically, we first design a high-quality feature extraction module and a precise video reconstruction module to extract and propagate high-quality features in the low-bit quantized model. In addition, to alleviate the information distortion of the Transformer branch in the quantized feature enhancement module, we introduce a shift operation on the query and key distributions to further bridge the performance gap. Comprehensive experimental results manifest that our Q-SCI framework can achieve superior performance, e.g., 4-bit quantized EfficientSCI-S derived by our Q-SCI framework can theoretically accelerate the real-valued EfficientSCI-S by 7.8X with only 2.3% performance gap on the simulation testing datasets. Code is available at https://github.com/mcao92/QuantizedSCI.
Abstract:We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI), which captures a spatial-spectral data cube using snapshot 2D measurements and uses algorithms to reconstruct 3D hyperspectral images (HSI). However, current methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies and non-local similarities. The recently popular Transformer-based methods are poorly deployed on downstream tasks due to the high computational cost caused by self-attention. In this paper, we propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN), applying deformable convolutional networks (DCN) to this task for the first time. Considering the sparsity of HSI, we design a deformable convolution module that exploits its deformability to capture long-range dependencies and non-local similarities. In addition, we propose a new spectral information interaction module that considers both coarse-grained and fine-grained spectral similarities. Extensive experiments demonstrate that our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
Abstract:Deciphering natural language from brain activity through non-invasive devices remains a formidable challenge. Previous non-invasive decoders either require multiple experiments with identical stimuli to pinpoint cortical regions and enhance signal-to-noise ratios in brain activity, or they are limited to discerning basic linguistic elements such as letters and words. We propose a novel approach to decoding continuous language from single-trial non-invasive fMRI recordings, in which a three-dimensional convolutional network augmented with information bottleneck is developed to automatically identify responsive voxels to stimuli, and a character-based decoder is designed for the semantic reconstruction of continuous language characterized by inherent character structures. The resulting decoder can produce intelligible textual sequences that faithfully capture the meaning of perceived speech both within and across subjects, while existing decoders exhibit significantly inferior performance in cross-subject contexts. The ability to decode continuous language from single trials across subjects demonstrates the promising applications of non-invasive language brain-computer interfaces in both healthcare and neuroscience.
Abstract:Video snapshot compressive imaging (SCI) uses a two-dimensional detector to capture consecutive video frames during a single exposure time. Following this, an efficient reconstruction algorithm needs to be designed to reconstruct the desired video frames. Although recent deep learning-based state-of-the-art (SOTA) reconstruction algorithms have achieved good results in most tasks, they still face the following challenges due to excessive model complexity and GPU memory limitations: 1) these models need high computational cost, and 2) they are usually unable to reconstruct large-scale video frames at high compression ratios. To address these issues, we develop an efficient network for video SCI by using dense connections and space-time factorization mechanism within a single residual block, dubbed EfficientSCI. The EfficientSCI network can well establish spatial-temporal correlation by using convolution in the spatial domain and Transformer in the temporal domain, respectively. We are the first time to show that an UHD color video with high compression ratio can be reconstructed from a snapshot 2D measurement using a single end-to-end deep learning model with PSNR above 32 dB. Extensive results on both simulation and real data show that our method significantly outperforms all previous SOTA algorithms with better real-time performance. The code is at https://github.com/ucaswangls/EfficientSCI.git.
Abstract:Computational reconstruction plays a vital role in computer vision and computational photography. Most of the conventional optimization and deep learning techniques explore local information for reconstruction. Recently, nonlocal low-rank (NLR) reconstruction has achieved remarkable success in improving accuracy and generalization. However, the computational cost has inhibited NLR from seeking global structural similarity, which consequentially keeps it trapped in the tradeoff between accuracy and efficiency and prevents it from high-dimensional large-scale tasks. To address this challenge, we report here the global low-rank (GLR) optimization technique, realizing highly-efficient large-scale reconstruction with global self-similarity. Inspired by the self-attention mechanism in deep learning, GLR extracts exemplar image patches by feature detection instead of conventional uniform selection. This directly produces key patches using structural features to avoid burdensome computational redundancy. Further, it performs patch matching across the entire image via neural-based convolution, which produces the global similarity heat map in parallel, rather than conventional sequential block-wise matching. As such, GLR improves patch grouping efficiency by more than one order of magnitude. We experimentally demonstrate GLR's effectiveness on temporal, frequency, and spectral dimensions, including different computational imaging modalities of compressive temporal imaging, magnetic resonance imaging, and multispectral filter array demosaicing. This work presents the superiority of inherent fusion of deep learning strategies and iterative optimization, and breaks the persistent dilemma of the tradeoff between accuracy and efficiency for various large-scale reconstruction tasks.
Abstract:Video snapshot compressive imaging (SCI) captures multiple sequential video frames by a single measurement using the idea of computational imaging. The underlying principle is to modulate high-speed frames through different masks and these modulated frames are summed to a single measurement captured by a low-speed 2D sensor (dubbed optical encoder); following this, algorithms are employed to reconstruct the desired high-speed frames (dubbed software decoder) if needed. In this paper, we consider the reconstruction algorithm in video SCI, i.e., recovering a series of video frames from a compressed measurement. Specifically, we propose a Spatial-Temporal transFormer (STFormer) to exploit the correlation in both spatial and temporal domains. STFormer network is composed of a token generation block, a video reconstruction block, and these two blocks are connected by a series of STFormer blocks. Each STFormer block consists of a spatial self-attention branch, a temporal self-attention branch and the outputs of these two branches are integrated by a fusion network. Extensive results on both simulated and real data demonstrate the state-of-the-art performance of STFormer. The code and models are publicly available at https://github.com/ucaswangls/STFormer.git
Abstract:360{\deg} cameras have gained popularity over the last few years. In this paper, we propose two fundamental techniques -- Field-of-View IoU (FoV-IoU) and 360Augmentation for object detection in 360{\deg} images. Although most object detection neural networks designed for the perspective images are applicable to 360{\deg} images in equirectangular projection (ERP) format, their performance deteriorates owing to the distortion in ERP images. Our method can be readily integrated with existing perspective object detectors and significantly improves the performance. The FoV-IoU computes the intersection-over-union of two Field-of-View bounding boxes in a spherical image which could be used for training, inference, and evaluation while 360Augmentation is a data augmentation technique specific to 360{\deg} object detection task which randomly rotates a spherical image and solves the bias due to the sphere-to-plane projection. We conduct extensive experiments on the 360indoor dataset with different types of perspective object detectors and show the consistent effectiveness of our method.
Abstract:Self-supervised visual pretraining has shown significant progress recently. Among those methods, SimCLR greatly advanced the state of the art in self-supervised and semi-supervised learning on ImageNet. The input feature representations for speech and visual tasks are both continuous, so it is natural to consider applying similar objective on speech representation learning. In this paper, we propose Speech SimCLR, a new self-supervised objective for speech representation learning. During training, Speech SimCLR applies augmentation on raw speech and its spectrogram. Its objective is the combination of contrastive loss that maximizes agreement between differently augmented samples in the latent space and reconstruction loss of input representation. The proposed method achieved competitive results on speech emotion recognition and speech recognition. When used as feature extractor, our best model achieved 5.89% word error rate on LibriSpeech test-clean set using LibriSpeech 960 hours as pretraining data and LibriSpeech train-clean-100 set as fine-tuning data, which is the lowest error rate obtained in this setup to the best of our knowledge.