Picture for Meike W. Vernooij

Meike W. Vernooij

for the Heart-Brain Connection Consortium

Prior-knowledge-informed deep learning for lacune detection and quantification using multi-site brain MRI

Add code
Jun 18, 2023
Viaarxiv icon

Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

Add code
Aug 15, 2022
Figure 1 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 2 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 3 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 4 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Viaarxiv icon

Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT

Add code
Jul 20, 2021
Figure 1 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 2 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 3 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Figure 4 for Automated Segmentation and Volume Measurement of Intracranial Carotid Artery Calcification on Non-Contrast CT
Viaarxiv icon

Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration

Add code
Dec 28, 2020
Figure 1 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 2 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 3 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 4 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Viaarxiv icon

Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI

Add code
Nov 03, 2020
Figure 1 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 2 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 3 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Viaarxiv icon

Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging

Add code
May 26, 2020
Figure 1 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 2 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 3 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 4 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Viaarxiv icon

When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans

Add code
Apr 12, 2020
Figure 1 for When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans
Figure 2 for When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans
Figure 3 for When Weak Becomes Strong: Robust Quantification of White Matter Hyperintensities in Brain MRI scans
Viaarxiv icon

Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network

Add code
Jul 29, 2019
Figure 1 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 2 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 3 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 4 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Viaarxiv icon

Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners

Add code
Mar 15, 2017
Figure 1 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 2 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 3 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 4 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Viaarxiv icon