Picture for M. Arfan Ikram

M. Arfan Ikram

for the ALFA study

Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

Add code
Aug 15, 2022
Figure 1 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 2 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 3 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Figure 4 for Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Viaarxiv icon

Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration

Add code
Dec 28, 2020
Figure 1 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 2 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 3 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Figure 4 for Longitudinal diffusion MRI analysis using Segis-Net: a single-step deep-learning framework for simultaneous segmentation and registration
Viaarxiv icon

Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI

Add code
Nov 03, 2020
Figure 1 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 2 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Figure 3 for Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI
Viaarxiv icon

Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging

Add code
May 26, 2020
Figure 1 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 2 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 3 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Figure 4 for Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging
Viaarxiv icon

Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network

Add code
Jul 29, 2019
Figure 1 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 2 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 3 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Figure 4 for Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network
Viaarxiv icon

Weakly Supervised Object Detection with 2D and 3D Regression Neural Networks

Add code
Jun 14, 2019
Figure 1 for Weakly Supervised Object Detection with 2D and 3D Regression Neural Networks
Figure 2 for Weakly Supervised Object Detection with 2D and 3D Regression Neural Networks
Figure 3 for Weakly Supervised Object Detection with 2D and 3D Regression Neural Networks
Figure 4 for Weakly Supervised Object Detection with 2D and 3D Regression Neural Networks
Viaarxiv icon

3D Regression Neural Network for the Quantification of Enlarged Perivascular Spaces in Brain MRI

Add code
Oct 28, 2018
Figure 1 for 3D Regression Neural Network for the Quantification of Enlarged Perivascular Spaces in Brain MRI
Figure 2 for 3D Regression Neural Network for the Quantification of Enlarged Perivascular Spaces in Brain MRI
Figure 3 for 3D Regression Neural Network for the Quantification of Enlarged Perivascular Spaces in Brain MRI
Figure 4 for 3D Regression Neural Network for the Quantification of Enlarged Perivascular Spaces in Brain MRI
Viaarxiv icon

Hydranet: Data Augmentation for Regression Neural Networks

Add code
Jul 12, 2018
Figure 1 for Hydranet: Data Augmentation for Regression Neural Networks
Figure 2 for Hydranet: Data Augmentation for Regression Neural Networks
Figure 3 for Hydranet: Data Augmentation for Regression Neural Networks
Figure 4 for Hydranet: Data Augmentation for Regression Neural Networks
Viaarxiv icon

Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners

Add code
Mar 15, 2017
Figure 1 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 2 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 3 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Figure 4 for Transfer Learning by Asymmetric Image Weighting for Segmentation across Scanners
Viaarxiv icon