Abstract:Offline Reinforcement Learning (RL) has emerged as a powerful alternative to imitation learning for behavior modeling in various domains, particularly in complex navigation tasks. An existing challenge with Offline RL is the signal-to-noise ratio, i.e. how to mitigate incorrect policy updates due to errors in value estimates. Towards this, multiple works have demonstrated the advantage of hierarchical offline RL methods, which decouples high-level path planning from low-level path following. In this work, we present a novel hierarchical transformer-based approach leveraging a learned quantizer of the space. This quantization enables the training of a simpler zone-conditioned low-level policy and simplifies planning, which is reduced to discrete autoregressive prediction. Among other benefits, zone-level reasoning in planning enables explicit trajectory stitching rather than implicit stitching based on noisy value function estimates. By combining this transformer-based planner with recent advancements in offline RL, our proposed approach achieves state-of-the-art results in complex long-distance navigation environments.
Abstract:Developing agents for complex and underspecified tasks, where no clear objective exists, remains challenging but offers many opportunities. This is especially true in video games, where simulated players (bots) need to play realistically, and there is no clear reward to evaluate them. While imitation learning has shown promise in such domains, these methods often fail when agents encounter out-of-distribution scenarios during deployment. Expanding the training dataset is a common solution, but it becomes impractical or costly when relying on human demonstrations. This article addresses active imitation learning, aiming to trigger expert intervention only when necessary, reducing the need for constant expert input along training. We introduce Random Network Distillation DAgger (RND-DAgger), a new active imitation learning method that limits expert querying by using a learned state-based out-of-distribution measure to trigger interventions. This approach avoids frequent expert-agent action comparisons, thus making the expert intervene only when it is useful. We evaluate RND-DAgger against traditional imitation learning and other active approaches in 3D video games (racing and third-person navigation) and in a robotic locomotion task and show that RND-DAgger surpasses previous methods by reducing expert queries. https://sites.google.com/view/rnd-dagger
Abstract:Standard cooperative multi-agent reinforcement learning (MARL) methods aim to find the optimal team cooperative policy to complete a task. However there may exist multiple different ways of cooperating, which usually are very needed by domain experts. Therefore, identifying a set of significantly different policies can alleviate the task complexity for them. Unfortunately, there is a general lack of effective policy diversity approaches specifically designed for the multi-agent domain. In this work, we propose a method called Moment-Matching Policy Diversity to alleviate this problem. This method can generate different team policies to varying degrees by formalizing the difference between team policies as the difference in actions of selected agents in different policies. Theoretically, we show that our method is a simple way to implement a constrained optimization problem that regularizes the difference between two trajectory distributions by using the maximum mean discrepancy. The effectiveness of our approach is demonstrated on a challenging team-based shooter.
Abstract:Deep reinforcement learning (DRL) techniques have become increasingly used in various fields for decision-making processes. However, a challenge that often arises is the trade-off between both the computational efficiency of the decision-making process and the ability of the learned agent to solve a particular task. This is particularly critical in real-time settings such as video games where the agent needs to take relevant decisions at a very high frequency, with a very limited inference time. In this work, we propose a generic offline learning approach where the computation cost of the input features is taken into account. We derive the Budgeted Decision Transformer as an extension of the Decision Transformer that incorporates cost constraints to limit its cost at inference. As a result, the model can dynamically choose the best input features at each timestep. We demonstrate the effectiveness of our method on several tasks, including D4RL benchmarks and complex 3D environments similar to those found in video games, and show that it can achieve similar performance while using significantly fewer computational resources compared to classical approaches.
Abstract:The ability to continuously acquire new knowledge and skills is crucial for autonomous agents. Existing methods are typically based on either fixed-size models that struggle to learn a large number of diverse behaviors, or growing-size models that scale poorly with the number of tasks. In this work, we aim to strike a better balance between an agent's size and performance by designing a method that grows adaptively depending on the task sequence. We introduce Continual Subspace of Policies (CSP), a new approach that incrementally builds a subspace of policies for training a reinforcement learning agent on a sequence of tasks. The subspace's high expressivity allows CSP to perform well for many different tasks while growing sublinearly with the number of tasks. Our method does not suffer from forgetting and displays positive transfer to new tasks. CSP outperforms a number of popular baselines on a wide range of scenarios from two challenging domains, Brax (locomotion) and Continual World (manipulation).
Abstract:Existing imitation learning methods mainly focus on making an agent effectively mimic a demonstrated behavior, but do not address the potential contradiction between the behavior style and the objective of a task. There is a general lack of efficient methods that allow an agent to partially imitate a demonstrated behavior to varying degrees, while completing the main objective of a task. In this paper we propose a method called Regularized Soft Actor-Critic which formulates the main task and the imitation task under the Constrained Markov Decision Process framework (CMDP). The main task is defined as the maximum entropy objective used in Soft Actor-Critic (SAC) and the imitation task is defined as a constraint. We evaluate our method on continuous control tasks relevant to video games applications.
Abstract:When users initiate search sessions, their queries are often unclear or might lack of context; this resulting in inefficient document ranking. Multiple approaches have been proposed by the Information Retrieval community to add context and retrieve documents aligned with users' intents. While some work focus on query disambiguation using users' browsing history, a recent line of work proposes to interact with users by asking clarification questions or/and proposing clarification panels. However, these approaches count either a limited number (i.e., 1) of interactions with user or log-based interactions. In this paper, we propose and evaluate a fully simulated query clarification framework allowing multi-turn interactions between IR systems and user agents.
Abstract:In reinforcement learning, the graph Laplacian has proved to be a valuable tool in the task-agnostic setting, with applications ranging from skill discovery to reward shaping. Recently, learning the Laplacian representation has been framed as the optimization of a temporally-contrastive objective to overcome its computational limitations in large (or continuous) state spaces. However, this approach requires uniform access to all states in the state space, overlooking the exploration problem that emerges during the representation learning process. In this work, we propose an alternative method that is able to recover, in a non-uniform-prior setting, the expressiveness and the desired properties of the Laplacian representation. We do so by combining the representation learning with a skill-based covering policy, which provides a better training distribution to extend and refine the representation. We also show that a simple augmentation of the representation objective with the learned temporal abstractions improves dynamics-awareness and helps exploration. We find that our method succeeds as an alternative to the Laplacian in the non-uniform setting and scales to challenging continuous control environments. Finally, even if our method is not optimized for skill discovery, the learned skills can successfully solve difficult continuous navigation tasks with sparse rewards, where standard skill discovery approaches are no so effective.
Abstract:There has been significant progress in creating machine learning models that identify objects in scenes along with their associated attributes and relationships; however, there is a large gap between the best models and human capabilities. One of the major reasons for this gap is the difficulty in collecting sufficient amounts of annotated relations and attributes for training these systems. While some attributes and relations are abundant, the distribution in the natural world and existing datasets is long tailed. In this paper, we address this problem by introducing a novel incremental active learning framework that asks for attributes and relations in visual scenes. While conventional active learning methods ask for labels of specific examples, we flip this framing to allow agents to ask for examples from specific categories. Using this framing, we introduce an active sampling method that asks for examples from the tail of the data distribution and show that it outperforms classical active learning methods on Visual Genome.
Abstract:Conversational Information Retrieval (CIR) is an emerging field of Information Retrieval (IR) at the intersection of interactive IR and dialogue systems for open domain information needs. In order to optimize these interactions and enhance the user experience, it is necessary to improve IR models by taking into account sequential heterogeneous user-system interactions. Reinforcement learning has emerged as a paradigm particularly suited to optimize sequential decision making in many domains and has recently appeared in IR. However, training these systems by reinforcement learning on users is not feasible. One solution is to train IR systems on user simulations that model the behavior of real users. Our contribution is twofold: 1)reviewing the literature on user modeling and user simulation for information access, and 2) discussing the different research perspectives for user simulations in the context of CIR