Abstract:The learning of Transformation-Equivariant Representations (TERs), which is introduced by Hinton et al. \cite{hinton2011transforming}, has been considered as a principle to reveal visual structures under various transformations. It contains the celebrated Convolutional Neural Networks (CNNs) as a special case that only equivary to the translations. In contrast, we seek to train TERs for a generic class of transformations and train them in an {\em unsupervised} fashion. To this end, we present a novel principled method by Autoencoding Variational Transformations (AVT), compared with the conventional approach to autoencoding data. Formally, given transformed images, the AVT seeks to train the networks by maximizing the mutual information between the transformations and representations. This ensures the resultant TERs of individual images contain the {\em intrinsic} information about their visual structures that would equivary {\em extricably} under various transformations. Technically, we show that the resultant optimization problem can be efficiently solved by maximizing a variational lower-bound of the mutual information. This variational approach introduces a transformation decoder to approximate the intractable posterior of transformations, resulting in an autoencoding architecture with a pair of the representation encoder and the transformation decoder. Experiments demonstrate the proposed AVT model sets a new record for the performances on unsupervised tasks, greatly closing the performance gap to the supervised models.
Abstract:The success of deep neural networks often relies on a large amount of labeled examples, which can be difficult to obtain in many real scenarios. To address this challenge, unsupervised methods are strongly preferred for training neural networks without using any labeled data. In this paper, we present a novel paradigm of unsupervised representation learning by Auto-Encoding Transformation (AET) in contrast to the conventional Auto-Encoding Data (AED) approach. Given a randomly sampled transformation, AET seeks to predict it merely from the encoded features as accurately as possible at the output end. The idea is the following: as long as the unsupervised features successfully encode the essential information about the visual structures of original and transformed images, the transformation can be well predicted. We will show that this AET paradigm allows us to instantiate a large variety of transformations, from parameterized, to non-parameterized and GAN-induced ones. Our experiments show that AET greatly improves over existing unsupervised approaches, setting new state-of-the-art performances being greatly closer to the upper bounds by their fully supervised counterparts on CIFAR-10, ImageNet and Places datasets.
Abstract:Image dehazing aims to recover the uncorrupted content from a hazy image. Instead of leveraging traditional low-level or handcrafted image priors as the restoration constraints, e.g., dark channels and increased contrast, we propose an end-to-end gated context aggregation network to directly restore the final haze-free image. In this network, we adopt the latest smoothed dilation technique to help remove the gridding artifacts caused by the widely-used dilated convolution with negligible extra parameters, and leverage a gated sub-network to fuse the features from different levels. Extensive experiments demonstrate that our method can surpass previous state-of-the-art methods by a large margin both quantitatively and qualitatively. In addition, to demonstrate the generality of the proposed method, we further apply it to the image deraining task, which also achieves the state-of-the-art performance.
Abstract:In this paper, we formalize the idea behind capsule nets of using a capsule vector rather than a neuron activation to predict the label of samples. To this end, we propose to learn a group of capsule subspaces onto which an input feature vector is projected. Then the lengths of resultant capsules are used to score the probability of belonging to different classes. We train such a Capsule Projection Network (CapProNet) by learning an orthogonal projection matrix for each capsule subspace, and show that each capsule subspace is updated until it contains input feature vectors corresponding to the associated class. We will also show that the capsule projection can be viewed as normalizing the multiple columns of the weight matrix simultaneously to form an orthogonal basis, which makes it more effective in incorporating novel components of input features to update capsule representations. In other words, the capsule projection can be viewed as a multi-dimensional weight normalization in capsule subspaces, where the conventional weight normalization is simply a special case of the capsule projection onto 1D lines. Only a small negligible computing overhead is incurred to train the network in low-dimensional capsule subspaces or through an alternative hyper-power iteration to estimate the normalization matrix. Experiment results on image datasets show the presented model can greatly improve the performance of the state-of-the-art ResNet backbones by $10-20\%$ and that of the Densenet by $5-7\%$ respectively at the same level of computing and memory expenses. The CapProNet establishes the competitive state-of-the-art performance for the family of capsule nets by significantly reducing test errors on the benchmark datasets.
Abstract:In this paper, we present a novel localized Generative Adversarial Net (GAN) to learn on the manifold of real data. Compared with the classic GAN that {\em globally} parameterizes a manifold, the Localized GAN (LGAN) uses local coordinate charts to parameterize distinct local geometry of how data points can transform at different locations on the manifold. Specifically, around each point there exists a {\em local} generator that can produce data following diverse patterns of transformations on the manifold. The locality nature of LGAN enables local generators to adapt to and directly access the local geometry without need to invert the generator in a global GAN. Furthermore, it can prevent the manifold from being locally collapsed to a dimensionally deficient tangent subspace by imposing an orthonormality prior between tangents. This provides a geometric approach to alleviating mode collapse at least locally on the manifold by imposing independence between data transformations in different tangent directions. We will also demonstrate the LGAN can be applied to train a robust classifier that prefers locally consistent classification decisions on the manifold, and the resultant regularizer is closely related with the Laplace-Beltrami operator. Our experiments show that the proposed LGANs can not only produce diverse image transformations, but also deliver superior classification performances.