Abstract:In recent years, the application of generative artificial intelligence (GenAI) in financial analysis and investment decision-making has gained significant attention. However, most existing approaches rely on single-agent systems, which fail to fully utilize the collaborative potential of multiple AI agents. In this paper, we propose a novel multi-agent collaboration system designed to enhance decision-making in financial investment research. The system incorporates agent groups with both configurable group sizes and collaboration structures to leverage the strengths of each agent group type. By utilizing a sub-optimal combination strategy, the system dynamically adapts to varying market conditions and investment scenarios, optimizing performance across different tasks. We focus on three sub-tasks: fundamentals, market sentiment, and risk analysis, by analyzing the 2023 SEC 10-K forms of 30 companies listed on the Dow Jones Index. Our findings reveal significant performance variations based on the configurations of AI agents for different tasks. The results demonstrate that our multi-agent collaboration system outperforms traditional single-agent models, offering improved accuracy, efficiency, and adaptability in complex financial environments. This study highlights the potential of multi-agent systems in transforming financial analysis and investment decision-making by integrating diverse analytical perspectives.
Abstract:Receiving immediate and personalized feedback is crucial for second-language learners, and Automated Essay Scoring (AES) systems are a vital resource when human instructors are unavailable. This study investigates the effectiveness of Large Language Models (LLMs), specifically GPT-4 and fine-tuned GPT-3.5, as tools for AES. Our comprehensive set of experiments, conducted on both public and private datasets, highlights the remarkable advantages of LLM-based AES systems. They include superior accuracy, consistency, generalizability, and interpretability, with fine-tuned GPT-3.5 surpassing traditional grading models. Additionally, we undertake LLM-assisted human evaluation experiments involving both novice and expert graders. One pivotal discovery is that LLMs not only automate the grading process but also enhance the performance of human graders. Novice graders when provided with feedback generated by LLMs, achieve a level of accuracy on par with experts, while experts become more efficient and maintain greater consistency in their assessments. These results underscore the potential of LLMs in educational technology, paving the way for effective collaboration between humans and AI, ultimately leading to transformative learning experiences through AI-generated feedback.
Abstract:Image captioning, an important vision-language task, often requires a tremendous number of finely labeled image-caption pairs for learning the underlying alignment between images and texts. In this paper, we proposed a multimodal data augmentation method, leveraging a recent text-to-image model called Stable Diffusion, to expand the training set via high-quality generation of image-caption pairs. Extensive experiments on the MS COCO dataset demonstrate the advantages of our approach over several benchmark methods, and particularly a significant boost when having fewer training instances. In addition, models trained on our augmented datasets also outperform prior unpaired image captioning methods by a large margin. Finally, further improvement regarding the training efficiency and effectiveness can be obtained after intentionally filtering the generated data based on quality assessment.
Abstract:Large-scale data missing is a challenging problem in Intelligent Transportation Systems (ITS). Many studies have been carried out to impute large-scale traffic data by considering their spatiotemporal correlations at a network level. In existing traffic data imputations, however, rich semantic information of a road network has been largely ignored when capturing network-wide spatiotemporal correlations. This study proposes a Graph Transformer for Traffic Data Imputation (GT-TDI) model to impute large-scale traffic data with spatiotemporal semantic understanding of a road network. Specifically, the proposed model introduces semantic descriptions consisting of network-wide spatial and temporal information of traffic data to help the GT-TDI model capture spatiotemporal correlations at a network level. The proposed model takes incomplete data, the social connectivity of sensors, and semantic descriptions as input to perform imputation tasks with the help of Graph Neural Networks (GNN) and Transformer. On the PeMS freeway dataset, extensive experiments are conducted to compare the proposed GT-TDI model with conventional methods, tensor factorization methods, and deep learning-based methods. The results show that the proposed GT-TDI outperforms existing methods in complex missing patterns and diverse missing rates. The code of the GT-TDI model will be available at https://github.com/KP-Zhang/GT-TDI.
Abstract:Stock selection attempts to rank a list of stocks for optimizing investment decision making, aiming at minimizing investment risks while maximizing profit returns. Recently, researchers have developed various (recurrent) neural network-based methods to tackle this problem. Without exceptions, they primarily leverage historical market volatility to enhance the selection performance. However, these approaches greatly rely on discrete sampled market observations, which either fail to consider the uncertainty of stock fluctuations or predict continuous stock dynamics in the future. Besides, some studies have considered the explicit stock interdependence derived from multiple domains (e.g., industry and shareholder). Nevertheless, the implicit cross-dependencies among different domains are under-explored. To address such limitations, we present a novel stock selection solution -- StockODE, a latent variable model with Gaussian prior. Specifically, we devise a Movement Trend Correlation module to expose the time-varying relationships regarding stock movements. We design Neural Recursive Ordinary Differential Equation Networks (NRODEs) to capture the temporal evolution of stock volatility in a continuous dynamic manner. Moreover, we build a hierarchical hypergraph to incorporate the domain-aware dependencies among the stocks. Experiments conducted on two real-world stock market datasets demonstrate that StockODE significantly outperforms several baselines, such as up to 18.57% average improvement regarding Sharpe Ratio.
Abstract:Trip recommendation is a significant and engaging location-based service that can help new tourists make more customized travel plans. It often attempts to suggest a sequence of point of interests (POIs) for a user who requests a personalized travel demand. Conventional methods either leverage the heuristic algorithms (e.g., dynamic programming) or statistical analysis (e.g., Markov models) to search or rank a POI sequence. These procedures may fail to capture the diversity of human needs and transitional regularities. They even provide recommendations that deviate from tourists' real travel intention when the trip data is sparse. Although recent deep recursive models (e.g., RNN) are capable of alleviating these concerns, existing solutions hardly recognize the practical reality, such as the diversity of tourist demands, uncertainties in the trip generation, and the complex visiting preference. Inspired by the advance in deep learning, we introduce a novel self-supervised representation learning framework for trip recommendation -- SelfTrip, aiming at tackling the aforementioned challenges. Specifically, we propose a two-step contrastive learning mechanism concerning the POI representation, as well as trip representation. Furthermore, we present four trip augmentation methods to capture the visiting uncertainties in trip planning. We evaluate our SelfTrip on four real-world datasets, and extensive results demonstrate the promising gain compared with several cutting-edge benchmarks, e.g., up to 4% and 12% on F1 and pair-F1, respectively.
Abstract:In this paper, we present a denoising sequence-to-sequence (seq2seq) autoencoder via contrastive learning for abstractive text summarization. Our model adopts a standard Transformer-based architecture with a multi-layer bi-directional encoder and an auto-regressive decoder. To enhance its denoising ability, we incorporate self-supervised contrastive learning along with various sentence-level document augmentation. These two components, seq2seq autoencoder and contrastive learning, are jointly trained through fine-tuning, which improves the performance of text summarization with regard to ROUGE scores and human evaluation. We conduct experiments on two datasets and demonstrate that our model outperforms many existing benchmarks and even achieves comparable performance to the state-of-the-art abstractive systems trained with more complex architecture and extensive computation resources.
Abstract:Supervised learning, while prevalent for information cascade modeling, often requires abundant labeled data in training, and the trained model is not easy to generalize across tasks and datasets. Semi-supervised learning facilitates unlabeled data for cascade understanding in pre-training. It often learns fine-grained feature-level representations, which can easily result in overfitting for downstream tasks. Recently, contrastive self-supervised learning is designed to alleviate these two fundamental issues in linguistic and visual tasks. However, its direct applicability for cascade modeling, especially graph cascade related tasks, remains underexplored. In this work, we present Contrastive Cascade Graph Learning (CCGL), a novel framework for cascade graph representation learning in a contrastive, self-supervised, and task-agnostic way. In particular, CCGL first designs an effective data augmentation strategy to capture variation and uncertainty. Second, it learns a generic model for graph cascade tasks via self-supervised contrastive pre-training using both unlabeled and labeled data. Third, CCGL learns a task-specific cascade model via fine-tuning using labeled data. Finally, to make the model transferable across datasets and cascade applications, CCGL further enhances the model via distillation using a teacher-student architecture. We demonstrate that CCGL significantly outperforms its supervised and semi-supervised counterpartsfor several downstream tasks.
Abstract:Predicting the start-ups that will eventually succeed is essentially important for the venture capital business and worldwide policy makers, especially at an early stage such that rewards can possibly be exponential. Though various empirical studies and data-driven modeling work have been done, the predictive power of the complex networks of stakeholders including venture capital investors, start-ups, and start-ups' managing members has not been thoroughly explored. We design an incremental representation learning mechanism and a sequential learning model, utilizing the network structure together with the rich attributes of the nodes. In general, our method achieves the state-of-the-art prediction performance on a comprehensive dataset of global venture capital investments and surpasses human investors by large margins. Specifically, it excels at predicting the outcomes for start-ups in industries such as healthcare and IT. Meanwhile, we shed light on impacts on start-up success from observable factors including gender, education, and networking, which can be of value for practitioners as well as policy makers when they screen ventures of high growth potentials.
Abstract:Existing weighting methods for treatment effect estimation are often built upon the idea of propensity scores or covariate balance. They usually impose strong assumptions on treatment assignment or outcome model to obtain unbiased estimation, such as linearity or specific functional forms, which easily leads to the major drawback of model mis-specification. In this paper, we aim to alleviate these issues by developing a distribution learning-based weighting method. We first learn the true underlying distribution of covariates conditioned on treatment assignment, then leverage the ratio of covariates' density in the treatment group to that of the control group as the weight for estimating treatment effects. Specifically, we propose to approximate the distribution of covariates in both treatment and control groups through invertible transformations via change of variables. To demonstrate the superiority, robustness, and generalizability of our method, we conduct extensive experiments using synthetic and real data. From the experiment results, we find that our method for estimating average treatment effect on treated (ATT) with observational data outperforms several cutting-edge weighting-only benchmarking methods, and it maintains its advantage under a doubly-robust estimation framework that combines weighting with some advanced outcome modeling methods.