Abstract:Hyperspectral image (HSI) contains abundant spatial and spectral information, making it highly valuable for unmixing. In this paper, we propose a Dual-Stream Attention Network (DSANet) for HSI unmixing. The endmembers and abundance of a pixel in HSI have high correlations with its adjacent pixels. Therefore, we adopt a "many to one" strategy to estimate the abundance of the central pixel. In addition, we adopt multiview spectral method, dividing spectral bands into multiple partitions with low correlations to estimate abundances. To aggregate the estimated abundances for complementary from the two branches, we design a cross-fusion attention network to enhance valuable information. Extensive experiments have been conducted on two real datasets, which demonstrate the effectiveness of our DSANet.
Abstract:Receiving immediate and personalized feedback is crucial for second-language learners, and Automated Essay Scoring (AES) systems are a vital resource when human instructors are unavailable. This study investigates the effectiveness of Large Language Models (LLMs), specifically GPT-4 and fine-tuned GPT-3.5, as tools for AES. Our comprehensive set of experiments, conducted on both public and private datasets, highlights the remarkable advantages of LLM-based AES systems. They include superior accuracy, consistency, generalizability, and interpretability, with fine-tuned GPT-3.5 surpassing traditional grading models. Additionally, we undertake LLM-assisted human evaluation experiments involving both novice and expert graders. One pivotal discovery is that LLMs not only automate the grading process but also enhance the performance of human graders. Novice graders when provided with feedback generated by LLMs, achieve a level of accuracy on par with experts, while experts become more efficient and maintain greater consistency in their assessments. These results underscore the potential of LLMs in educational technology, paving the way for effective collaboration between humans and AI, ultimately leading to transformative learning experiences through AI-generated feedback.