Abstract:Hyperspectral image (HSI) and synthetic aperture radar (SAR) data joint classification is a crucial and yet challenging task in the field of remote sensing image interpretation. However, feature modeling in existing methods is deficient to exploit the abundant global, spectral, and local features simultaneously, leading to sub-optimal classification performance. To solve the problem, we propose a hierarchical attention and parallel filter fusion network for multi-source data classification. Concretely, we design a hierarchical attention module for hyperspectral feature extraction. This module integrates global, spectral, and local features simultaneously to provide more comprehensive feature representation. In addition, we develop parallel filter fusion module which enhances cross-modal feature interactions among different spatial locations in the frequency domain. Extensive experiments on two multi-source remote sensing data classification datasets verify the superiority of our proposed method over current state-of-the-art classification approaches. Specifically, our proposed method achieves 91.44% and 80.51% of overall accuracy (OA) on the respective datasets, highlighting its superior performance.
Abstract:Cross-Domain Few-Shot Learning has witnessed great stride with the development of meta-learning. However, most existing methods pay more attention to learning domain-adaptive inductive bias (meta-knowledge) through feature-wise manipulation or task diversity improvement while neglecting the phenomenon that deep networks tend to rely more on high-frequency cues to make the classification decision, which thus degenerates the robustness of learned inductive bias since high-frequency information is vulnerable and easy to be disturbed by noisy information. Hence in this paper, we make one of the first attempts to propose a Frequency-Aware Prompting method with mutual attention for Cross-Domain Few-Shot classification, which can let networks simulate the human visual perception of selecting different frequency cues when facing new recognition tasks. Specifically, a frequency-aware prompting mechanism is first proposed, in which high-frequency components of the decomposed source image are switched either with normal distribution sampling or zeroing to get frequency-aware augment samples. Then, a mutual attention module is designed to learn generalizable inductive bias under CD-FSL settings. More importantly, the proposed method is a plug-and-play module that can be directly applied to most off-the-shelf CD-FLS methods. Experimental results on CD-FSL benchmarks demonstrate the effectiveness of our proposed method as well as robustly improve the performance of existing CD-FLS methods. Resources at https://github.com/tinkez/FAP_CDFSC.
Abstract:Hyperspectral image (HSI) contains abundant spatial and spectral information, making it highly valuable for unmixing. In this paper, we propose a Dual-Stream Attention Network (DSANet) for HSI unmixing. The endmembers and abundance of a pixel in HSI have high correlations with its adjacent pixels. Therefore, we adopt a "many to one" strategy to estimate the abundance of the central pixel. In addition, we adopt multiview spectral method, dividing spectral bands into multiple partitions with low correlations to estimate abundances. To aggregate the estimated abundances for complementary from the two branches, we design a cross-fusion attention network to enhance valuable information. Extensive experiments have been conducted on two real datasets, which demonstrate the effectiveness of our DSANet.
Abstract:Multi-source remote sensing data classification has emerged as a prominent research topic with the advancement of various sensors. Existing multi-source data classification methods are susceptible to irrelevant information interference during multi-source feature extraction and fusion. To solve this issue, we propose a sparse focus network for multi-source data classification. Sparse attention is employed in Transformer block for HSI and SAR/LiDAR feature extraction, thereby the most useful self-attention values are maintained for better feature aggregation. Furthermore, cross-attention is used to enhance multi-source feature interactions, and further improves the efficiency of cross-modal feature fusion. Experimental results on the Berlin and Houston2018 datasets highlight the effectiveness of SF-Net, outperforming existing state-of-the-art methods.
Abstract:Predicting accurate normal maps of objects from two-dimensional images in regions of complex structure and spatial material variations is challenging using photometric stereo methods due to the influence of surface reflection properties caused by variations in object geometry and surface materials. To address this issue, we propose a photometric stereo network called a RMAFF-PSN that uses residual multiscale attentional feature fusion to handle the ``difficult'' regions of the object. Unlike previous approaches that only use stacked convolutional layers to extract deep features from the input image, our method integrates feature information from different resolution stages and scales of the image. This approach preserves more physical information, such as texture and geometry of the object in complex regions, through shallow-deep stage feature extraction, double branching enhancement, and attention optimization. To test the network structure under real-world conditions, we propose a new real dataset called Simple PS data, which contains multiple objects with varying structures and materials. Experimental results on a publicly available benchmark dataset demonstrate that our method outperforms most existing calibrated photometric stereo methods for the same number of input images, especially in the case of highly non-convex object structures. Our method also obtains good results under sparse lighting conditions.
Abstract:Contrastive Language-Image Pre-training (CLIP) starts to emerge in many computer vision tasks and has achieved promising performance. However, it remains underexplored whether CLIP can be generalized to 3D hand pose estimation, as bridging text prompts with pose-aware features presents significant challenges due to the discrete nature of joint positions in 3D space. In this paper, we make one of the first attempts to propose a novel 3D hand pose estimator from monocular images, dubbed as CLIP-Hand3D, which successfully bridges the gap between text prompts and irregular detailed pose distribution. In particular, the distribution order of hand joints in various 3D space directions is derived from pose labels, forming corresponding text prompts that are subsequently encoded into text representations. Simultaneously, 21 hand joints in the 3D space are retrieved, and their spatial distribution (in x, y, and z axes) is encoded to form pose-aware features. Subsequently, we maximize semantic consistency for a pair of pose-text features following a CLIP-based contrastive learning paradigm. Furthermore, a coarse-to-fine mesh regressor is designed, which is capable of effectively querying joint-aware cues from the feature pyramid. Extensive experiments on several public hand benchmarks show that the proposed model attains a significantly faster inference speed while achieving state-of-the-art performance compared to methods utilizing the similar scale backbone.
Abstract:The task of Camouflaged Object Detection (COD) aims to accurately segment camouflaged objects that integrated into the environment, which is more challenging than ordinary detection as the texture between the target and background is visually indistinguishable. In this paper, we proposed a novel Feature Grafting and Distractor Aware network (FDNet) to handle the COD task. Specifically, we use CNN and Transformer to encode multi-scale images in parallel. In order to better explore the advantages of the two encoders, we design a cross-attention-based Feature Grafting Module to graft features extracted from Transformer branch into CNN branch, after which the features are aggregated in the Feature Fusion Module. A Distractor Aware Module is designed to explicitly model the two possible distractors in the COD task to refine the coarse camouflage map. We also proposed the largest artificial camouflaged object dataset which contains 2000 images with annotations, named ACOD2K. We conducted extensive experiments on four widely used benchmark datasets and the ACOD2K dataset. The results show that our method significantly outperforms other state-of-the-art methods. The code and the ACOD2K will be available at https://github.com/syxvision/FDNet.
Abstract:Existing edge-aware camouflaged object detection (COD) methods normally output the edge prediction in the early stage. However, edges are important and fundamental factors in the following segmentation task. Due to the high visual similarity between camouflaged targets and the surroundings, edge prior predicted in early stage usually introduces erroneous foreground-background and contaminates features for segmentation. To tackle this problem, we propose a novel Edge-aware Mirror Network (EAMNet), which models edge detection and camouflaged object segmentation as a cross refinement process. More specifically, EAMNet has a two-branch architecture, where a segmentation-induced edge aggregation module and an edge-induced integrity aggregation module are designed to cross-guide the segmentation branch and edge detection branch. A guided-residual channel attention module which leverages the residual connection and gated convolution finally better extracts structural details from low-level features. Quantitative and qualitative experiment results show that EAMNet outperforms existing cutting-edge baselines on three widely used COD datasets. Codes are available at https://github.com/sdy1999/EAMNet.
Abstract:Hyperspectral unmixing is a critical yet challenging task in hyperspectral image interpretation. Recently, great efforts have been made to solve the hyperspectral unmixing task via deep autoencoders. However, existing networks mainly focus on extracting spectral features from mixed pixels, and the employment of spatial feature prior knowledge is still insufficient. To this end, we put forward a spatial attention weighted unmixing network, dubbed as SAWU-Net, which learns a spatial attention network and a weighted unmixing network in an end-to-end manner for better spatial feature exploitation. In particular, we design a spatial attention module, which consists of a pixel attention block and a window attention block to efficiently model pixel-based spectral information and patch-based spatial information, respectively. While in the weighted unmixing framework, the central pixel abundance is dynamically weighted by the coarse-grained abundances of surrounding pixels. In addition, SAWU-Net generates dynamically adaptive spatial weights through the spatial attention mechanism, so as to dynamically integrate surrounding pixels more effectively. Experimental results on real and synthetic datasets demonstrate the better accuracy and superiority of SAWU-Net, which reflects the effectiveness of the proposed spatial attention mechanism.
Abstract:Textures contain a wealth of image information and are widely used in various fields such as computer graphics and computer vision. With the development of machine learning, the texture synthesis and generation have been greatly improved. As a very common element in everyday life, wallpapers contain a wealth of texture information, making it difficult to annotate with a simple single label. Moreover, wallpaper designers spend significant time to create different styles of wallpaper. For this purpose, this paper proposes to describe wallpaper texture images by using multi-label semantics. Based on these labels and generative adversarial networks, we present a framework for perception driven wallpaper texture generation and style transfer. In this framework, a perceptual model is trained to recognize whether the wallpapers produced by the generator network are sufficiently realistic and have the attribute designated by given perceptual description; these multi-label semantic attributes are treated as condition variables to generate wallpaper images. The generated wallpaper images can be converted to those with well-known artist styles using CycleGAN. Finally, using the aesthetic evaluation method, the generated wallpaper images are quantitatively measured. The experimental results demonstrate that the proposed method can generate wallpaper textures conforming to human aesthetics and have artistic characteristics.