Abstract:Recently Transformer-based hyperspectral image (HSI) change detection methods have shown remarkable performance. Nevertheless, existing attention mechanisms in Transformers have limitations in local feature representation. To address this issue, we propose Global and Local Attention-based Transformer (GLAFormer), which incorporates a global and local attention module (GLAM) to combine high-frequency and low-frequency signals. Furthermore, we introduce a cross-gating mechanism, called cross-gated feed-forward network (CGFN), to emphasize salient features and suppress noise interference. Specifically, the GLAM splits attention heads into global and local attention components to capture comprehensive spatial-spectral features. The global attention component employs global attention on downsampled feature maps to capture low-frequency information, while the local attention component focuses on high-frequency details using non-overlapping window-based local attention. The CGFN enhances the feature representation via convolutions and cross-gating mechanism in parallel paths. The proposed GLAFormer is evaluated on three HSI datasets. The results demonstrate its superiority over state-of-the-art HSI change detection methods. The source code of GLAFormer is available at \url{https://github.com/summitgao/GLAFormer}.
Abstract:Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high spatial resolution, and many tensor-based approaches to this task have been recently proposed. Yet, it is assumed in such tensor-based methods that the spatial-blurring operation that creates the observed hyperspectral image from the desired super-resolved image is separable into independent horizontal and vertical blurring. Recent work has argued that such separable spatial degradation is ill-equipped to model the operation of real sensors which may exhibit, for example, anisotropic blurring. To accommodate this fact, a generalized tensor formulation based on a Kronecker decomposition is proposed to handle any general spatial-degradation matrix, including those that are not separable as previously assumed. Analysis of the generalized formulation reveals conditions under which exact recovery of the desired super-resolved image is guaranteed, and a practical algorithm for such recovery, driven by a blockwise-group-sparsity regularization, is proposed. Extensive experimental results demonstrate that the proposed generalized tensor approach outperforms not only traditional matrix-based techniques but also state-of-the-art tensor-based methods; the gains with respect to the latter are especially significant in cases of anisotropic spatial blurring.
Abstract:In multi-source remote sensing image classification field, remarkable progress has been made by convolutional neural network and Transformer. However, existing methods are still limited due to the inherent local reductive bias. Recently, Mamba-based methods built upon the State Space Model have shown great potential for long-range dependency modeling with linear complexity, but it has rarely been explored for the multi-source remote sensing image classification task. To this end, we propose Multi-Scale Feature Fusion Mamba (MSFMamba) network for hyperspectral image (HSI) and LiDAR/SAR data joint classification. Specifically, MSFMamba mainly comprises three parts: Multi-Scale Spatial Mamba (MSpa-Mamba) block, Spectral Mamba (Spe-Mamba) block, and Fusion Mamba (Fus-Mamba) block. Specifically, to solve the feature redundancy in multiple canning routes, the MSpa-Mamba block incorporates the multi-scale strategy to minimize the computational redundancy and alleviate the feature redundancy of SSM. In addition, Spe-Mamba is designed for spectral feature exploration, which is essential for HSI feature modeling. Moreover, to alleviate the heterogeneous gap between HSI and LiDAR/SAR data, we design Fus-Mamba block for multi-source feature fusion. The original Mamba is extended to accommodate dual inputs, and cross-modal feature interaction is enhanced. Extensive experimental results on three multi-source remote sensing datasets demonstrate the superiority performance of the proposed MSFMamba over the state-of-the-art models. Source codes of MSFMamba will be made public available at https://github.com/summitgao/MSFMamba .
Abstract:Hyperspectral object tracking (HOT) has exhibited potential in various applications, particularly in scenes where objects are camouflaged. Existing trackers can effectively retrieve objects via band regrouping because of the bias in existing HOT datasets, where most objects tend to have distinguishing visual appearances rather than spectral characteristics. This bias allows the tracker to directly use the visual features obtained from the false-color images generated by hyperspectral images without the need to extract spectral features. To tackle this bias, we find that the tracker should focus on the spectral information when object appearance is unreliable. Thus, we provide a new task called hyperspectral camouflaged object tracking (HCOT) and meticulously construct a large-scale HCOT dataset, termed BihoT, which consists of 41,912 hyperspectral images covering 49 video sequences. The dataset covers various artificial camouflage scenes where objects have similar appearances, diverse spectrums, and frequent occlusion, making it a very challenging dataset for HCOT. Besides, a simple but effective baseline model, named spectral prompt-based distractor-aware network (SPDAN), is proposed, comprising a spectral embedding network (SEN), a spectral prompt-based backbone network (SPBN), and a distractor-aware module (DAM). Specifically, the SEN extracts spectral-spatial features via 3-D and 2-D convolutions. Then, the SPBN fine-tunes powerful RGB trackers with spectral prompts and alleviates the insufficiency of training samples. Moreover, the DAM utilizes a novel statistic to capture the distractor caused by occlusion from objects and background. Extensive experiments demonstrate that our proposed SPDAN achieves state-of-the-art performance on the proposed BihoT and other HOT datasets.
Abstract:Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data. However, simultaneously modeling global and local features is rarely explored to enhance HSI denoising. In this letter, we propose a hybrid convolution and attention network (HCANet), which leverages both the strengths of convolution neural networks (CNNs) and Transformers. To enhance the modeling of both global and local features, we have devised a convolution and attention fusion module aimed at capturing long-range dependencies and neighborhood spectral correlations. Furthermore, to improve multi-scale information aggregation, we design a multi-scale feed-forward network to enhance denoising performance by extracting features at different scales. Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet. The proposed model is effective in removing various types of complex noise. Our codes are available at \url{https://github.com/summitgao/HCANet}.
Abstract:Hyperspectral video (HSV) offers valuable spatial, spectral, and temporal information simultaneously, making it highly suitable for handling challenges such as background clutter and visual similarity in object tracking. However, existing methods primarily focus on band regrouping and rely on RGB trackers for feature extraction, resulting in limited exploration of spectral information and difficulties in achieving complementary representations of object features. In this paper, a spatial-spectral fusion network with spectral angle awareness (SST-Net) is proposed for hyperspectral (HS) object tracking. Firstly, to address the issue of insufficient spectral feature extraction in existing networks, a spatial-spectral feature backbone ($S^2$FB) is designed. With the spatial and spectral extraction branch, a joint representation of texture and spectrum is obtained. Secondly, a spectral attention fusion module (SAFM) is presented to capture the intra- and inter-modality correlation to obtain the fused features from the HS and RGB modalities. It can incorporate the visual information into the HS spectral context to form a robust representation. Thirdly, to ensure a more accurate response of the tracker to the object position, a spectral angle awareness module (SAAM) investigates the region-level spectral similarity between the template and search images during the prediction stage. Furthermore, we develop a novel spectral angle awareness loss (SAAL) to offer guidance for the SAAM based on similar regions. Finally, to obtain the robust tracking results, a weighted prediction method is considered to combine the HS and RGB predicted motions of objects to leverage the strengths of each modality. Extensive experiments on the HOTC dataset demonstrate the effectiveness of the proposed SSF-Net, compared with state-of-the-art trackers.
Abstract:Masked image modeling (MIM) is a highly popular and effective self-supervised learning method for image understanding. Existing MIM-based methods mostly focus on spatial feature modeling, neglecting spectral feature modeling. Meanwhile, existing MIM-based methods use Transformer for feature extraction, some local or high-frequency information may get lost. To this end, we propose a spatial-spectral masked auto-encoder (SS-MAE) for HSI and LiDAR/SAR data joint classification. Specifically, SS-MAE consists of a spatial-wise branch and a spectral-wise branch. The spatial-wise branch masks random patches and reconstructs missing pixels, while the spectral-wise branch masks random spectral channels and reconstructs missing channels. Our SS-MAE fully exploits the spatial and spectral representations of the input data. Furthermore, to complement local features in the training stage, we add two lightweight CNNs for feature extraction. Both global and local features are taken into account for feature modeling. To demonstrate the effectiveness of the proposed SS-MAE, we conduct extensive experiments on three publicly available datasets. Extensive experiments on three multi-source datasets verify the superiority of our SS-MAE compared with several state-of-the-art baselines. The source codes are available at \url{https://github.com/summitgao/SS-MAE}.
Abstract:Synthetic aperture radar (SAR) image change detection is a critical task and has received increasing attentions in the remote sensing community. However, existing SAR change detection methods are mainly based on convolutional neural networks (CNNs), with limited consideration of global attention mechanism. In this letter, we explore Transformer-like architecture for SAR change detection to incorporate global attention. To this end, we propose a convolution and attention mixer (CAMixer). First, to compensate the inductive bias for Transformer, we combine self-attention with shift convolution in a parallel way. The parallel design effectively captures the global semantic information via the self-attention and performs local feature extraction through shift convolution simultaneously. Second, we adopt a gating mechanism in the feed-forward network to enhance the non-linear feature transformation. The gating mechanism is formulated as the element-wise multiplication of two parallel linear layers. Important features can be highlighted, leading to high-quality representations against speckle noise. Extensive experiments conducted on three SAR datasets verify the superior performance of the proposed CAMixer. The source codes will be publicly available at https://github.com/summitgao/CAMixer .
Abstract:Traditionally, numerical models have been deployed in oceanography studies to simulate ocean dynamics by representing physical equations. However, many factors pertaining to ocean dynamics seem to be ill-defined. We argue that transferring physical knowledge from observed data could further improve the accuracy of numerical models when predicting Sea Surface Temperature (SST). Recently, the advances in earth observation technologies have yielded a monumental growth of data. Consequently, it is imperative to explore ways in which to improve and supplement numerical models utilizing the ever-increasing amounts of historical observational data. To this end, we introduce a method for SST prediction that transfers physical knowledge from historical observations to numerical models. Specifically, we use a combination of an encoder and a generative adversarial network (GAN) to capture physical knowledge from the observed data. The numerical model data is then fed into the pre-trained model to generate physics-enhanced data, which can then be used for SST prediction. Experimental results demonstrate that the proposed method considerably enhances SST prediction performance when compared to several state-of-the-art baselines.
Abstract:Removing the noise and improving the visual quality of hyperspectral images (HSIs) is challenging in academia and industry. Great efforts have been made to leverage local, global or spectral context information for HSI denoising. However, existing methods still have limitations in feature interaction exploitation among multiple scales and rich spectral structure preservation. In view of this, we propose a novel solution to investigate the HSI denoising using a Multi-scale Adaptive Fusion Network (MAFNet), which can learn the complex nonlinear mapping between clean and noisy HSI. Two key components contribute to improving the hyperspectral image denoising: A progressively multiscale information aggregation network and a co-attention fusion module. Specifically, we first generate a set of multiscale images and feed them into a coarse-fusion network to exploit the contextual texture correlation. Thereafter, a fine fusion network is followed to exchange the information across the parallel multiscale subnetworks. Furthermore, we design a co-attention fusion module to adaptively emphasize informative features from different scales, and thereby enhance the discriminative learning capability for denoising. Extensive experiments on synthetic and real HSI datasets demonstrate that the proposed MAFNet has achieved better denoising performance than other state-of-the-art techniques. Our codes are available at \verb'https://github.com/summitgao/MAFNet'.