Abstract:Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Abstract:Underperformance of ASR systems for speakers of African American Vernacular English (AAVE) and other marginalized language varieties is a well-documented phenomenon, and one that reinforces the stigmatization of these varieties. We investigate whether or not the recent wave of Self-Supervised Learning (SSL) speech models can close the gap in ASR performance between AAVE and Mainstream American English (MAE). We evaluate four SSL models (wav2vec 2.0, HuBERT, WavLM, and XLS-R) on zero-shot Automatic Speech Recognition (ASR) for these two varieties and find that these models perpetuate the bias in performance against AAVE. Additionally, the models have higher word error rates on utterances with more phonological and morphosyntactic features of AAVE. Despite the success of SSL speech models in improving ASR for low resource varieties, SSL pre-training alone may not bridge the gap between AAVE and MAE. Our code is publicly available at https://github.com/cmu-llab/s3m-aave.
Abstract:Historical linguists have long written a kind of incompletely formalized ''program'' that converts reconstructed words in an ancestor language into words in one of its attested descendants that consist of a series of ordered string rewrite functions (called sound laws). They do this by observing pairs of words in the reconstructed language (protoforms) and the descendent language (reflexes) and constructing a program that transforms protoforms into reflexes. However, writing these programs is error-prone and time-consuming. Prior work has successfully scaffolded this process computationally, but fewer researchers have tackled Sound Law Induction (SLI), which we approach in this paper by casting it as Programming by Examples. We propose a language-agnostic solution that utilizes the programming ability of Large Language Models (LLMs) by generating Python sound law programs from sound change examples. We evaluate the effectiveness of our approach for various LLMs, propose effective methods to generate additional language-agnostic synthetic data to fine-tune LLMs for SLI, and compare our method with existing automated SLI methods showing that while LLMs lag behind them they can complement some of their weaknesses.
Abstract:Received wisdom in linguistic typology holds that if the structure of a language becomes more complex in one dimension, it will simplify in another, building on the assumption that all languages are equally complex (Joseph and Newmeyer, 2012). We study this claim on a micro-level, using a tightly-controlled sample of Dutch dialects (across 366 collection sites) and Min dialects (across 60 sites), which enables a more fair comparison across varieties. Even at the dialect level, we find empirical evidence for a tradeoff between word length and a computational measure of phonotactic complexity from a LSTM-based phone-level language model-a result previously documented only at the language level. A generalized additive model (GAM) shows that dialects with low phonotactic complexity concentrate around the capital regions, which we hypothesize to correspond to prior hypotheses that language varieties of greater or more diverse populations show reduced phonotactic complexity. We also experiment with incorporating the auxiliary task of predicting syllable constituency, but do not find an increase in the negative correlation observed.
Abstract:We describe a set of new methods to partially automate linguistic phylogenetic inference given (1) cognate sets with their respective protoforms and sound laws, (2) a mapping from phones to their articulatory features and (3) a typological database of sound changes. We train a neural network on these sound change data to weight articulatory distances between phones and predict intermediate sound change steps between historical protoforms and their modern descendants, replacing a linguistic expert in part of a parsimony-based phylogenetic inference algorithm. In our best experiments on Tukanoan languages, this method produces trees with a Generalized Quartet Distance of 0.12 from a tree that used expert annotations, a significant improvement over other semi-automated baselines. We discuss potential benefits and drawbacks to our neural approach and parsimony-based tree prediction. We also experiment with a minimal generalization learner for automatic sound law induction, finding it comparably effective to sound laws from expert annotation. Our code is publicly available at https://github.com/cmu-llab/aiscp.
Abstract:Taiwanese Hokkien is declining in use and status due to a language shift towards Mandarin in Taiwan. This is partly why it is a low resource language in NLP and speech research today. To ensure that the state of the art in speech processing does not leave Taiwanese Hokkien behind, we contribute a 1.5-hour dataset of Taiwanese Hokkien to ML-SUPERB's hidden set. Evaluating ML-SUPERB's suite of self-supervised learning (SSL) speech representations on our dataset, we find that model size does not consistently determine performance. In fact, certain smaller models outperform larger ones. Furthermore, linguistic alignment between pretraining data and the target language plays a crucial role.
Abstract:Protoform reconstruction is the task of inferring what morphemes or words appeared like in the ancestral languages of a set of daughter languages. Meloni et al. (2021) achieved the state-of-the-art on Latin protoform reconstruction with an RNN-based encoder-decoder with attention model. We update their model with the state-of-the-art seq2seq model: the Transformer. Our model outperforms their model on a suite of different metrics on two different datasets: their Romance data of 8,000 cognates spanning 5 languages and a Chinese dataset (Hou 2004) of 800+ cognates spanning 39 varieties. We also probe our model for potential phylogenetic signal contained in the model. Our code is publicly available at https://github.com/cmu-llab/acl-2023.
Abstract:Word embeddings that map words into a fixed-dimensional vector space are the backbone of modern NLP. Most word embedding methods encode semantic information. However, phonetic information, which is important for some tasks, is often overlooked. In this work, we develop several novel methods which leverage articulatory features to build phonetically informed word embeddings, and present a set of phonetic word embeddings to encourage their community development, evaluation and use. While several methods for learning phonetic word embeddings already exist, there is a lack of consistency in evaluating their effectiveness. Thus, we also proposes several ways to evaluate both intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and extrinsic performances, such as rhyme and cognate detection and sound analogies. We hope that our suite of tasks will promote reproducibility and provide direction for future research on phonetic word embeddings.