Picture for Jinfeng Wang

Jinfeng Wang

Contrastive Learning Via Equivariant Representation

Add code
Jun 01, 2024
Viaarxiv icon

ProMISe: Promptable Medical Image Segmentation using SAM

Add code
Mar 07, 2024
Viaarxiv icon

Atrial Septal Defect Detection in Children Based on Ultrasound Video Using Multiple Instances Learning

Add code
Jun 06, 2023
Viaarxiv icon

Distortion-Disentangled Contrastive Learning

Add code
Mar 09, 2023
Viaarxiv icon

Bilateral-Fuser: A Novel Multi-cue Fusion Architecture with Anatomical-aware Tokens for Fovea Localization

Add code
Feb 14, 2023
Viaarxiv icon

DuAT: Dual-Aggregation Transformer Network for Medical Image Segmentation

Add code
Dec 21, 2022
Viaarxiv icon

Stepwise Feature Fusion: Local Guides Global

Add code
Mar 07, 2022
Figure 1 for Stepwise Feature Fusion: Local Guides Global
Figure 2 for Stepwise Feature Fusion: Local Guides Global
Figure 3 for Stepwise Feature Fusion: Local Guides Global
Figure 4 for Stepwise Feature Fusion: Local Guides Global
Viaarxiv icon

A Robust Framework of Chromosome Straightening with ViT-Patch GAN

Add code
Mar 06, 2022
Figure 1 for A Robust Framework of Chromosome Straightening with ViT-Patch GAN
Figure 2 for A Robust Framework of Chromosome Straightening with ViT-Patch GAN
Figure 3 for A Robust Framework of Chromosome Straightening with ViT-Patch GAN
Figure 4 for A Robust Framework of Chromosome Straightening with ViT-Patch GAN
Viaarxiv icon

Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation

Add code
Dec 29, 2018
Figure 1 for Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation
Figure 2 for Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation
Figure 3 for Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation
Figure 4 for Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation
Viaarxiv icon