Abstract:Atmospheric nitrogen oxides (NOx) primarily from fuel combustion have recognized acute and chronic health and environmental effects. Machine learning (ML) methods have significantly enhanced our capacity to predict NOx concentrations at ground-level with high spatiotemporal resolution but may suffer from high estimation bias since they lack physical and chemical knowledge about air pollution dynamics. Chemical transport models (CTMs) leverage this knowledge; however, accurate predictions of ground-level concentrations typically necessitate extensive post-calibration. Here, we present a physics-informed deep learning framework that encodes advection-diffusion mechanisms and fluid dynamics constraints to jointly predict NO2 and NOx and reduce ML model bias by 21-42%. Our approach captures fine-scale transport of NO2 and NOx, generates robust spatial extrapolation, and provides explicit uncertainty estimation. The framework fuses knowledge-driven physicochemical principles of CTMs with the predictive power of ML for air quality exposure, health, and policy applications. Our approach offers significant improvements over purely data-driven ML methods and has unprecedented bias reduction in joint NO2 and NOx prediction.
Abstract:To have a superior generalization, a deep learning neural network often involves a large size of training sample. With increase of hidden layers in order to increase learning ability, neural network has potential degradation in accuracy. Both could seriously limit applicability of deep learning in some domains particularly involving predictions of continuous variables with a small size of samples. Inspired by residual convolutional neural network in computer vision and recent findings of crucial shortcuts in the brains in neuroscience, we propose an autoencoder-based residual deep network for robust prediction. In a nested way, we leverage shortcut connections to implement residual mapping with a balanced structure for efficient propagation of error signals. The novel method is demonstrated by multiple datasets, imputation of high spatiotemporal resolution non-randomness missing values of aerosol optical depth, and spatiotemporal estimation of fine particulate matter <2.5 \mu m, achieving the cutting edge of accuracy and efficiency. Our approach is also a general-purpose regression learner to be applicable in diverse domains.