Abstract:The customization of large language models (LLMs) for user-specified tasks gets important. However, maintaining all the customized LLMs on cloud servers incurs substantial memory and computational overheads, and uploading user data can also lead to privacy concerns. On-device LLMs can offer a promising solution by mitigating these issues. Yet, the performance of on-device LLMs is inherently constrained by the limitations of small-scaled models. To overcome these restrictions, we first propose Crayon, a novel approach for on-device LLM customization. Crayon begins by constructing a pool of diverse base adapters, and then we instantly blend them into a customized adapter without extra training. In addition, we develop a device-server hybrid inference strategy, which deftly allocates more demanding queries or non-customized tasks to a larger, more capable LLM on a server. This ensures optimal performance without sacrificing the benefits of on-device customization. We carefully craft a novel benchmark from multiple question-answer datasets, and show the efficacy of our method in the LLM customization.
Abstract:We propose a novel framework DropTop that suppresses the shortcut bias in online continual learning (OCL) while being adaptive to the varying degree of the shortcut bias incurred by continuously changing environment. By the observed high-attention property of the shortcut bias, highly-activated features are considered candidates for debiasing. More importantly, resolving the limitation of the online environment where prior knowledge and auxiliary data are not ready, two novel techniques -- feature map fusion and adaptive intensity shifting -- enable us to automatically determine the appropriate level and proportion of the candidate shortcut features to be dropped. Extensive experiments on five benchmark datasets demonstrate that, when combined with various OCL algorithms, DropTop increases the average accuracy by up to 10.4% and decreases the forgetting by up to 63.2%.
Abstract:Pre-trained Vision Language Models (VLMs) have demonstrated notable progress in various zero-shot tasks, such as classification and retrieval. Despite their performance, because improving performance on new tasks requires task-specific knowledge, their adaptation is essential. While labels are needed for the adaptation, acquiring them is typically expensive. To overcome this challenge, active learning, a method of achieving a high performance by obtaining labels for a small number of samples from experts, has been studied. Active learning primarily focuses on selecting unlabeled samples for labeling and leveraging them to train models. In this study, we pose the question, "how can the pre-trained VLMs be adapted under the active learning framework?" In response to this inquiry, we observe that (1) simply applying a conventional active learning framework to pre-trained VLMs even may degrade performance compared to random selection because of the class imbalance in labeling candidates, and (2) the knowledge of VLMs can provide hints for achieving the balance before labeling. Based on these observations, we devise a novel active learning framework for VLMs, denoted as PCB. To assess the effectiveness of our approach, we conduct experiments on seven different real-world datasets, and the results demonstrate that PCB surpasses conventional active learning and random sampling methods.
Abstract:In real-world continual learning scenarios, tasks often exhibit intricate and unpredictable semantic shifts, posing challenges for fixed prompt management strategies. We identify the inadequacy of universal and specific prompting in handling these dynamic shifts. Universal prompting is ineffective for tasks with abrupt semantic changes, while specific prompting struggles with overfitting under mild semantic shifts. To overcome these limitations, we propose an adaptive prompting approach that tailors minimal yet sufficient prompts based on the task semantics. Our methodology, SemPrompt, incorporates a two-level semantic grouping process: macroscopic semantic assignment and microscopic semantic refinement. This process ensures optimal prompt utilization for varying task semantics, improving the efficiency and effectiveness of learning in real-world CL settings. Our experimental results demonstrate that SemPrompt consistently outperforms existing methods in adapting to diverse semantic shifts in tasks.
Abstract:Prompt-OVD is an efficient and effective framework for open-vocabulary object detection that utilizes class embeddings from CLIP as prompts, guiding the Transformer decoder to detect objects in both base and novel classes. Additionally, our novel RoI-based masked attention and RoI pruning techniques help leverage the zero-shot classification ability of the Vision Transformer-based CLIP, resulting in improved detection performance at minimal computational cost. Our experiments on the OV-COCO and OVLVIS datasets demonstrate that Prompt-OVD achieves an impressive 21.2 times faster inference speed than the first end-to-end open-vocabulary detection method (OV-DETR), while also achieving higher APs than four two-stage-based methods operating within similar inference time ranges. Code will be made available soon.
Abstract:Unlabeled data examples awaiting annotations contain open-set noise inevitably. A few active learning studies have attempted to deal with this open-set noise for sample selection by filtering out the noisy examples. However, because focusing on the purity of examples in a query set leads to overlooking the informativeness of the examples, the best balancing of purity and informativeness remains an important question. In this paper, to solve this purity-informativeness dilemma in open-set active learning, we propose a novel Meta-Query-Net,(MQ-Net) that adaptively finds the best balancing between the two factors. Specifically, by leveraging the multi-round property of active learning, we train MQ-Net using a query set without an additional validation set. Furthermore, a clear dominance relationship between unlabeled examples is effectively captured by MQ-Net through a novel skyline regularization. Extensive experiments on multiple open-set active learning scenarios demonstrate that the proposed MQ-Net achieves 20.14% improvement in terms of accuracy, compared with the state-of-the-art methods.
Abstract:Learning under a continuously changing data distribution with incorrect labels is a desirable real-world problem yet challenging. A large body of continual learning (CL) methods, however, assumes data streams with clean labels, and online learning scenarios under noisy data streams are yet underexplored. We consider a more practical CL task setup of an online learning from blurry data stream with corrupted labels, where existing CL methods struggle. To address the task, we first argue the importance of both diversity and purity of examples in the episodic memory of continual learning models. To balance diversity and purity in the episodic memory, we propose a novel strategy to manage and use the memory by a unified approach of label noise aware diverse sampling and robust learning with semi-supervised learning. Our empirical validations on four real-world or synthetic noise datasets (CIFAR10 and 100, mini-WebVision, and Food-101N) exhibit that our method significantly outperforms prior arts in this realistic and challenging continual learning scenario. Code and data splits are available in https://github.com/clovaai/puridiver.
Abstract:Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus on 'blurry' task boundary; where tasks shares classes and is more realistic and practical. To address such task, we argue the importance of diversity of samples in an episodic memory. To enhance the sample diversity in the memory, we propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation, named Rainbow Memory (RM). With extensive empirical validations on MNIST, CIFAR10, CIFAR100, and ImageNet datasets, we show that the proposed method significantly improves the accuracy in blurry continual learning setups, outperforming state of the arts by large margins despite its simplicity. Code and data splits will be available in https://github.com/clovaai/rainbow-memory.
Abstract:The cost of labeling transcriptions for large speech corpora becomes a bottleneck to maximally enjoy the potential capacity of deep neural network-based automatic speech recognition (ASR) models. Therefore, in this paper, we present a new training scheme that minimizes the labeling cost by adopting the concepts of semi-supervised learning (SSL) and active learning (AL) approaches and making a synergy from them. While AL studies only focus on selecting minimized the number of samples to be labeled with a criterion and taking advantage of such samples, we show that the training efficiency can be further improved by utilizing the unlabeled samples by sophisticatedly designing unsupervised loss that complements the unwanted behavior of supervised loss effectively. Our unsupervised loss is built on Consistency-Regularization (CR) approach, and we propose appropriate augmentation techniques to adopt CR in ASR field successfully. From the qualitative and quantitative experiments on the real-world dataset from deployed end-user voice assistant services, we show that the proposed methods can handle a large number of unlabeled speech data to achieve competitive model performance, with a sustainable amount of human labeling cost.
Abstract:Designing a lightweight and robust portrait segmentation algorithm is an important task for a wide range of face applications. However, the problem has been considered as a subset of the object segmentation problem and less handled in the semantic segmentation field. Obviously, portrait segmentation has its unique requirements. First, because the portrait segmentation is performed in the middle of a whole process of many real-world applications, it requires extremely lightweight models. Second, there has not been any public datasets in this domain that contain a sufficient number of images with unbiased statistics. To solve the first problem, we introduce the new extremely lightweight portrait segmentation model SINet, containing an information blocking decoder and spatial squeeze modules. The information blocking decoder uses confidence estimates to recover local spatial information without spoiling global consistency. The spatial squeeze module uses multiple receptive fields to cope with various sizes of consistency in the image. To tackle the second problem, we propose a simple method to create additional portrait segmentation data which can improve accuracy on the EG1800 dataset. In our qualitative and quantitative analysis on the EG1800 dataset, we show that our method outperforms various existing lightweight segmentation models. Our method reduces the number of parameters from 2.1M to 86.9K (around 95.9% reduction), while maintaining the accuracy under an 1% margin from the state-of-the-art portrait segmentation method. We also show our model is successfully executed on a real mobile device with 100.6 FPS. In addition, we demonstrate that our method can be used for general semantic segmentation on the Cityscapes dataset. The code and dataset are available in https://github.com/HYOJINPARK/ExtPortraitSeg .