Abstract:Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
Abstract:For capturing colored document images, e.g. posters and magazines, it is common that multiple degradations such as shadows, wrinkles, etc., are simultaneously introduced due to external factors. Restoring multi-degraded colored document images is a great challenge, yet overlooked, as most existing algorithms focus on enhancing color-ignored document images via binarization. Thus, we propose DocStormer, a novel algorithm designed to restore multi-degraded colored documents to their potential pristine PDF. The contributions are: firstly, we propose a "Perceive-then-Restore" paradigm with a reinforced transformer block, which more effectively encodes and utilizes the distribution of degradations. Secondly, we are the first to utilize GAN and pristine PDF magazine images to narrow the distribution gap between the enhanced results and PDF images, in pursuit of less degradation and better visual quality. Thirdly, we propose a non-parametric strategy, PFILI, which enables a smaller training scale and larger testing resolutions with acceptable detail trade-off, while saving memory and inference time. Fourthly, we are the first to propose a novel Multi-Degraded Colored Document image Enhancing dataset, named MD-CDE, for both training and evaluation. Experimental results show that the DocStormer exhibits superior performance, capable of revitalizing multi-degraded colored documents into their potential pristine digital versions, which fills the current academic gap from the perspective of method, data, and task.