Abstract:Biometric recognition has primarily addressed closed-set identification, assuming all probe subjects are in the gallery. However, most practical applications involve open-set biometrics, where probe subjects may or may not be present in the gallery. This poses distinct challenges in effectively distinguishing individuals in the gallery while minimizing false detections. While it is commonly believed that powerful biometric models can excel in both closed- and open-set scenarios, existing loss functions are inconsistent with open-set evaluation. They treat genuine (mated) and imposter (non-mated) similarity scores symmetrically and neglect the relative magnitudes of imposter scores. To address these issues, we simulate open-set evaluation using minibatches during training and introduce novel loss functions: (1) the identification-detection loss optimized for open-set performance under selective thresholds and (2) relative threshold minimization to reduce the maximum negative score for each probe. Across diverse biometric tasks, including face recognition, gait recognition, and person re-identification, our experiments demonstrate the effectiveness of the proposed loss functions, significantly enhancing open-set performance while positively impacting closed-set performance. Our code and models are available at https://github.com/prevso1088/open-set-biometrics.
Abstract:Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
Abstract:In this paper, we address the challenge of making ViT models more robust to unseen affine transformations. Such robustness becomes useful in various recognition tasks such as face recognition when image alignment failures occur. We propose a novel method called KP-RPE, which leverages key points (e.g.~facial landmarks) to make ViT more resilient to scale, translation, and pose variations. We begin with the observation that Relative Position Encoding (RPE) is a good way to bring affine transform generalization to ViTs. RPE, however, can only inject the model with prior knowledge that nearby pixels are more important than far pixels. Keypoint RPE (KP-RPE) is an extension of this principle, where the significance of pixels is not solely dictated by their proximity but also by their relative positions to specific keypoints within the image. By anchoring the significance of pixels around keypoints, the model can more effectively retain spatial relationships, even when those relationships are disrupted by affine transformations. We show the merit of KP-RPE in face and gait recognition. The experimental results demonstrate the effectiveness in improving face recognition performance from low-quality images, particularly where alignment is prone to failure. Code and pre-trained models are available.
Abstract:Vision Transformers (ViTs) have emerged as powerful backbones in computer vision, outperforming many traditional CNNs. However, their computational overhead, largely attributed to the self-attention mechanism, makes deployment on resource-constrained edge devices challenging. Multiple solutions rely on token pruning or token merging. In this paper, we introduce "Token Fusion" (ToFu), a method that amalgamates the benefits of both token pruning and token merging. Token pruning proves advantageous when the model exhibits sensitivity to input interpolations, while token merging is effective when the model manifests close to linear responses to inputs. We combine this to propose a new scheme called Token Fusion. Moreover, we tackle the limitations of average merging, which doesn't preserve the intrinsic feature norm, resulting in distributional shifts. To mitigate this, we introduce MLERP merging, a variant of the SLERP technique, tailored to merge multiple tokens while maintaining the norm distribution. ToFu is versatile, applicable to ViTs with or without additional training. Our empirical evaluations indicate that ToFu establishes new benchmarks in both classification and image generation tasks concerning computational efficiency and model accuracy.
Abstract:Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are still several challenges that must be covered in more detail. This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology. Specifically, the FRCSyn Challenge targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. The results achieved in the FRCSyn Challenge, together with the proposed benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
Abstract:Long-Term Person Re-Identification (LT-ReID) has become increasingly crucial in computer vision and biometrics. In this work, we aim to extend LT-ReID beyond pedestrian recognition to include a wider range of real-world human activities while still accounting for cloth-changing scenarios over large time gaps. This setting poses additional challenges due to the geometric misalignment and appearance ambiguity caused by the diversity of human pose and clothing. To address these challenges, we propose a new approach 3DInvarReID for (i) disentangling identity from non-identity components (pose, clothing shape, and texture) of 3D clothed humans, and (ii) reconstructing accurate 3D clothed body shapes and learning discriminative features of naked body shapes for person ReID in a joint manner. To better evaluate our study of LT-ReID, we collect a real-world dataset called CCDA, which contains a wide variety of human activities and clothing changes. Experimentally, we show the superior performance of our approach for person ReID.
Abstract:Whole-body biometric recognition is an important area of research due to its vast applications in law enforcement, border security, and surveillance. This paper presents the end-to-end design, development and evaluation of FarSight, an innovative software system designed for whole-body (fusion of face, gait and body shape) biometric recognition. FarSight accepts videos from elevated platforms and drones as input and outputs a candidate list of identities from a gallery. The system is designed to address several challenges, including (i) low-quality imagery, (ii) large yaw and pitch angles, (iii) robust feature extraction to accommodate large intra-person variabilities and large inter-person similarities, and (iv) the large domain gap between training and test sets. FarSight combines the physics of imaging and deep learning models to enhance image restoration and biometric feature encoding. We test FarSight's effectiveness using the newly acquired IARPA Biometric Recognition and Identification at Altitude and Range (BRIAR) dataset. Notably, FarSight demonstrated a substantial performance increase on the BRIAR dataset, with gains of +11.82% Rank-20 identification and +11.3% TAR@1% FAR.
Abstract:Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (\textit{e.g.}, variations in pose, illumination, expression, aging and occlusion) which follows the real image conditional distribution. Previous works have studied the generation of synthetic datasets using GAN or 3D models. In this work, we approach the problem from the aspect of combining subject appearance (ID) and external factor (style) conditions. These two conditions provide a direct way to control the inter-class and intra-class variations. To this end, we propose a Dual Condition Face Generator (DCFace) based on a diffusion model. Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control. Face recognition models trained on synthetic images from the proposed DCFace provide higher verification accuracies compared to previous works by $6.11\%$ on average in $4$ out of $5$ test datasets, LFW, CFP-FP, CPLFW, AgeDB and CALFW. Code is available at https://github.com/mk-minchul/dcface
Abstract:Feature fusion plays a crucial role in unconstrained face recognition where inputs (probes) comprise of a set of $N$ low quality images whose individual qualities vary. Advances in attention and recurrent modules have led to feature fusion that can model the relationship among the images in the input set. However, attention mechanisms cannot scale to large $N$ due to their quadratic complexity and recurrent modules suffer from input order sensitivity. We propose a two-stage feature fusion paradigm, Cluster and Aggregate, that can both scale to large $N$ and maintain the ability to perform sequential inference with order invariance. Specifically, Cluster stage is a linear assignment of $N$ inputs to $M$ global cluster centers, and Aggregation stage is a fusion over $M$ clustered features. The clustered features play an integral role when the inputs are sequential as they can serve as a summarization of past features. By leveraging the order-invariance of incremental averaging operation, we design an update rule that achieves batch-order invariance, which guarantees that the contributions of early image in the sequence do not diminish as time steps increase. Experiments on IJB-B and IJB-S benchmark datasets show the superiority of the proposed two-stage paradigm in unconstrained face recognition. Code and pretrained models are available in https://github.com/mk-minchul/caface
Abstract:Although significant advances have been made in face recognition (FR), FR in unconstrained environments remains challenging due to the domain gap between the semi-constrained training datasets and unconstrained testing scenarios. To address this problem, we propose a controllable face synthesis model (CFSM) that can mimic the distribution of target datasets in a style latent space. CFSM learns a linear subspace with orthogonal bases in the style latent space with precise control over the diversity and degree of synthesis. Furthermore, the pre-trained synthesis model can be guided by the FR model, making the resulting images more beneficial for FR model training. Besides, target dataset distributions are characterized by the learned orthogonal bases, which can be utilized to measure the distributional similarity among face datasets. Our approach yields significant performance gains on unconstrained benchmarks, such as IJB-B, IJB-C, TinyFace and IJB-S (+5.76% Rank1).