Abstract:In current molecular communication (MC) systems, performing computational operations at the nanoscale remains challenging, restricting their applicability in complex scenarios such as adaptive biochemical control and advanced nanoscale sensing. To overcome this challenge, this paper proposes a novel framework that seamlessly integrates computation into the molecular communication process. The system enables arithmetic operations, namely addition, subtraction, multiplication, and division, by encoding numerical values into two types of molecules emitted by each transmitter to represent positive and negative values, respectively. Specifically, addition is achieved by transmitting non-reactive molecules, while subtraction employs reactive molecules that interact during propagation. The receiver demodulates molecular counts to directly compute the desired results. Theoretical analysis for an upper bound on the bit error rate (BER), and computational simulations confirm the system's robustness in performing complex arithmetic tasks. Compared to conventional MC methods, the proposed approach not only enables fundamental computational operations at the nanoscale but also lays the groundwork for intelligent, autonomous molecular networks.