Abstract:Chain-of-Thought (CoT) has become a vital technique for enhancing the performance of Large Language Models (LLMs), attracting increasing attention from researchers. One stream of approaches focuses on the iterative enhancement of LLMs by continuously verifying and refining their reasoning outputs for desired quality. Despite its impressive results, this paradigm faces two critical issues: (1) Simple verification methods: The current paradigm relies solely on a single verification method. (2) Wrong Information Ignorance: Traditional paradigms directly ignore wrong information during reasoning and refine the logic paths from scratch each time. To address these challenges, we propose Wrong-of-Thought (WoT), which includes two core modules: (1) Multi-Perspective Verification: A multi-perspective verification method for accurately refining the reasoning process and result, and (2) Wrong Information Utilization: Utilizing wrong information to alert LLMs and reduce the probability of LLMs making same mistakes. Experiments on 8 popular datasets and 5 LLMs demonstrate that WoT surpasses all previous baselines. In addition, WoT exhibits powerful capabilities in difficult computation tasks.
Abstract:With the growing complexity of fact verification tasks, the concern with "thoughtful" reasoning capabilities is increasing. However, recent fact verification benchmarks mainly focus on checking a narrow scope of semantic factoids within claims and lack an explicit logical reasoning process. In this paper, we introduce CheckWhy, a challenging dataset tailored to a novel causal fact verification task: checking the truthfulness of the causal relation within claims through rigorous reasoning steps. CheckWhy consists of over 19K "why" claim-evidence-argument structure triplets with supports, refutes, and not enough info labels. Each argument structure is composed of connected evidence, representing the reasoning process that begins with foundational evidence and progresses toward claim establishment. Through extensive experiments on state-of-the-art models, we validate the importance of incorporating the argument structure for causal fact verification. Moreover, the automated and human evaluation of argument structure generation reveals the difficulty in producing satisfying argument structure by fine-tuned models or Chain-of-Thought prompted LLMs, leaving considerable room for future improvements.
Abstract:Slot filling and intent detection are two highly correlated tasks in spoken language understanding (SLU). Recent SLU research attempts to explore zero-shot prompting techniques in large language models to alleviate the data scarcity problem. Nevertheless, the existing prompting work ignores the cross-task interaction information for SLU, which leads to sub-optimal performance. To solve this problem, we present the pioneering work of Cross-task Interactive Prompting (CroPrompt) for SLU, which enables the model to interactively leverage the information exchange across the correlated tasks in SLU. Additionally, we further introduce a multi-task self-consistency mechanism to mitigate the error propagation caused by the intent information injection. We conduct extensive experiments on the standard SLU benchmark and the results reveal that CroPrompt consistently outperforms the existing prompting approaches. In addition, the multi-task self-consistency mechanism can effectively ease the error propagation issue, thereby enhancing the performance. We hope this work can inspire more research on cross-task prompting for SLU.
Abstract:Automatic multi-hop fact verification task has gained significant attention in recent years. Despite impressive results, these well-designed models perform poorly on out-of-domain data. One possible solution is to augment the training data with counterfactuals, which are generated by minimally altering the causal features of the original data. However, current counterfactual data augmentation techniques fail to handle multi-hop fact verification due to their incapability to preserve the complex logical relationships within multiple correlated texts. In this paper, we overcome this limitation by developing a rationale-sensitive method to generate linguistically diverse and label-flipping counterfactuals while preserving logical relationships. In specific, the diverse and fluent counterfactuals are generated via an Explain-Edit-Generate architecture. Moreover, the checking and filtering modules are proposed to regularize the counterfactual data with logical relations and flipped labels. Experimental results show that the proposed approach outperforms the SOTA baselines and can generate linguistically diverse counterfactual data without disrupting their logical relationships.
Abstract:Given a controversial target such as ``nuclear energy'', argument mining aims to identify the argumentative text from heterogeneous sources. Current approaches focus on exploring better ways of integrating the target-associated semantic information with the argumentative text. Despite their empirical successes, two issues remain unsolved: (i) a target is represented by a word or a phrase, which is insufficient to cover a diverse set of target-related subtopics; (ii) the sentence-level topic information within an argument, which we believe is crucial for argument mining, is ignored. To tackle the above issues, we propose a novel explainable topic-enhanced argument mining approach. Specifically, with the use of the neural topic model and the language model, the target information is augmented by explainable topic representations. Moreover, the sentence-level topic information within the argument is captured by minimizing the distance between its latent topic distribution and its semantic representation through mutual learning. Experiments have been conducted on the benchmark dataset in both the in-target setting and the cross-target setting. Results demonstrate the superiority of the proposed model against the state-of-the-art baselines.
Abstract:The success of deep learning models on multi-hop fact verification has prompted researchers to understand the behavior behind their veracity. One possible way is erasure search: obtaining the rationale by entirely removing a subset of input without compromising the veracity prediction. Although extensively explored, existing approaches fall within the scope of the single-granular (tokens or sentences) explanation, which inevitably leads to explanation redundancy and inconsistency. To address such issues, this paper explores the viability of multi-granular rationale extraction with consistency and faithfulness for explainable multi-hop fact verification. In particular, given a pretrained veracity prediction model, both the token-level explainer and sentence-level explainer are trained simultaneously to obtain multi-granular rationales via differentiable masking. Meanwhile, three diagnostic properties (fidelity, consistency, salience) are introduced and applied to the training process, to ensure that the extracted rationales satisfy faithfulness and consistency. Experimental results on three multi-hop fact verification datasets show that the proposed approach outperforms some state-of-the-art baselines.
Abstract:The opaqueness of the multi-hop fact verification model imposes imperative requirements for explainability. One feasible way is to extract rationales, a subset of inputs, where the performance of prediction drops dramatically when being removed. Though being explainable, most rationale extraction methods for multi-hop fact verification explore the semantic information within each piece of evidence individually, while ignoring the topological information interaction among different pieces of evidence. Intuitively, a faithful rationale bears complementary information being able to extract other rationales through the multi-hop reasoning process. To tackle such disadvantages, we cast explainable multi-hop fact verification as subgraph extraction, which can be solved based on graph convolutional network (GCN) with salience-aware graph learning. In specific, GCN is utilized to incorporate the topological interaction information among multiple pieces of evidence for learning evidence representation. Meanwhile, to alleviate the influence of noisy evidence, the salience-aware graph perturbation is induced into the message passing of GCN. Moreover, the multi-task model with three diagnostic properties of rationale is elaborately designed to improve the quality of an explanation without any explicit annotations. Experimental results on the FEVEROUS benchmark show significant gains over previous state-of-the-art methods for both rationale extraction and fact verification.
Abstract:Fact verification is a challenging task that requires simultaneously reasoning and aggregating over multiple retrieved pieces of evidence to evaluate the truthfulness of a claim. Existing approaches typically (i) explore the semantic interaction between the claim and evidence at different granularity levels but fail to capture their topical consistency during the reasoning process, which we believe is crucial for verification; (ii) aggregate multiple pieces of evidence equally without considering their implicit stances to the claim, thereby introducing spurious information. To alleviate the above issues, we propose a novel topic-aware evidence reasoning and stance-aware aggregation model for more accurate fact verification, with the following four key properties: 1) checking topical consistency between the claim and evidence; 2) maintaining topical coherence among multiple pieces of evidence; 3) ensuring semantic similarity between the global topic information and the semantic representation of evidence; 4) aggregating evidence based on their implicit stances to the claim. Extensive experiments conducted on the two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification. The source code can be obtained from https://github.com/jasenchn/TARSA.