Abstract:Computationally intensive decoding procedures--including search, reranking, and self-critique--can improve the quality of language model (LM) outputs in problems spanning code generation, numerical reasoning, and dialog. Existing work typically applies the same decoding procedure for every input to an LM. But not all inputs require the same amount of computation to process. Can we allocate decoding computation adaptively, using more resources to answer questions whose answers will be harder to compute? We present an approach that predicts the distribution of rewards given an input and computation budget, then allocates additional computation to inputs for which it is predicted to be most useful. We apply this approach in two decoding procedures: first, an adaptive best-of-k procedure that dynamically selects the number of samples to generate as input to a reranker; second, a routing procedure that dynamically responds to a query using a decoding procedure that is expensive but accurate, or one that is cheaper but less capable. Across a suite of programming, mathematics, and dialog tasks, we show that accurate computation-allocation procedures can be learned, and reduce computation by up to 50% at no cost to response quality, or improve quality by up to 10% at a fixed computational budget.
Abstract:Behavior cloning (BC) currently stands as a dominant paradigm for learning real-world visual manipulation. However, in tasks that require locally corrective behaviors like multi-part assembly, learning robust policies purely from human demonstrations remains challenging. Reinforcement learning (RL) can mitigate these limitations by allowing policies to acquire locally corrective behaviors through task reward supervision and exploration. This paper explores the use of RL fine-tuning to improve upon BC-trained policies in precise manipulation tasks. We analyze and overcome technical challenges associated with using RL to directly train policy networks that incorporate modern architectural components like diffusion models and action chunking. We propose training residual policies on top of frozen BC-trained diffusion models using standard policy gradient methods and sparse rewards, an approach we call ResiP (Residual for Precise manipulation). Our experimental results demonstrate that this residual learning framework can significantly improve success rates beyond the base BC-trained models in high-precision assembly tasks by learning corrective actions. We also show that by combining ResiP with teacher-student distillation and visual domain randomization, our method can enable learning real-world policies for robotic assembly directly from RGB images. Find videos and code at \url{https://residual-assembly.github.io}.
Abstract:Aligning Large Language Models (LLMs) to cater to different human preferences, learning new skills, and unlearning harmful behavior is an important problem. Search-based methods, such as Best-of-N or Monte-Carlo Tree Search, are performant, but impractical for LLM adaptation due to their high inference cost. On the other hand, using Reinforcement Learning (RL) for adaptation is computationally efficient, but performs worse due to the optimization challenges in co-training the value function and the policy. We present a new framework for reward optimization, Value Augmented Sampling (VAS), that can maximize different reward functions using data sampled from only the initial, frozen LLM. VAS solves for the optimal reward-maximizing policy without co-training the policy and the value function, making the optimization stable, outperforming established baselines, such as PPO and DPO, on standard benchmarks, and achieving comparable results to Best-of-128 with lower inference cost. Unlike existing RL methods that require changing the weights of the LLM, VAS does not require access to the weights of the pre-trained LLM. Thus, it can even adapt LLMs (e.g., ChatGPT), which are available only as APIs. In addition, our algorithm unlocks the new capability of composing several rewards and controlling the extent of each one during deployment time, paving the road ahead for the future of aligned, personalized LLMs.
Abstract:While learning from demonstrations is powerful for acquiring visuomotor policies, high-performance imitation without large demonstration datasets remains challenging for tasks requiring precise, long-horizon manipulation. This paper proposes a pipeline for improving imitation learning performance with a small human demonstration budget. We apply our approach to assembly tasks that require precisely grasping, reorienting, and inserting multiple parts over long horizons and multiple task phases. Our pipeline combines expressive policy architectures and various techniques for dataset expansion and simulation-based data augmentation. These help expand dataset support and supervise the model with locally corrective actions near bottleneck regions requiring high precision. We demonstrate our pipeline on four furniture assembly tasks in simulation, enabling a manipulator to assemble up to five parts over nearly 2500 time steps directly from RGB images, outperforming imitation and data augmentation baselines. Project website: https://imitation-juicer.github.io/.
Abstract:Large language models (LLMs) hold great potential for many natural language applications but risk generating incorrect or toxic content. To probe when an LLM generates unwanted content, the current paradigm is to recruit a \textit{red team} of human testers to design input prompts (i.e., test cases) that elicit undesirable responses from LLMs. However, relying solely on human testers is expensive and time-consuming. Recent works automate red teaming by training a separate red team LLM with reinforcement learning (RL) to generate test cases that maximize the chance of eliciting undesirable responses from the target LLM. However, current RL methods are only able to generate a small number of effective test cases resulting in a low coverage of the span of prompts that elicit undesirable responses from the target LLM. To overcome this limitation, we draw a connection between the problem of increasing the coverage of generated test cases and the well-studied approach of curiosity-driven exploration that optimizes for novelty. Our method of curiosity-driven red teaming (CRT) achieves greater coverage of test cases while mantaining or increasing their effectiveness compared to existing methods. Our method, CRT successfully provokes toxic responses from LLaMA2 model that has been heavily fine-tuned using human preferences to avoid toxic outputs. Code is available at \url{https://github.com/Improbable-AI/curiosity_redteam}
Abstract:Learning from rewards (i.e., reinforcement learning or RL) and learning to imitate a teacher (i.e., teacher-student learning) are two established approaches for solving sequential decision-making problems. To combine the benefits of these different forms of learning, it is common to train a policy to maximize a combination of reinforcement and teacher-student learning objectives. However, without a principled method to balance these objectives, prior work used heuristics and problem-specific hyperparameter searches to balance the two objectives. We present a $\textit{principled}$ approach, along with an approximate implementation for $\textit{dynamically}$ and $\textit{automatically}$ balancing when to follow the teacher and when to use rewards. The main idea is to adjust the importance of teacher supervision by comparing the agent's performance to the counterfactual scenario of the agent learning without teacher supervision and only from rewards. If using teacher supervision improves performance, the importance of teacher supervision is increased and otherwise it is decreased. Our method, $\textit{Teacher Guided Reinforcement Learning}$ (TGRL), outperforms strong baselines across diverse domains without hyper-parameter tuning.