Abstract:Large Language Models (LLMs) have demonstrated impressive real-world utility, exemplifying artificial useful intelligence (AUI). However, their ability to reason adaptively and robustly -- the hallmarks of artificial general intelligence (AGI) -- remains fragile. While LLMs seemingly succeed in commonsense reasoning, programming, and mathematics, they struggle to generalize algorithmic understanding across novel contexts. Our experiments with algorithmic tasks in esoteric programming languages reveal that LLM's reasoning overfits to the training data and is limited in its transferability. We hypothesize that the core issue underlying such limited transferability is the coupling of reasoning and knowledge in LLMs. To transition from AUI to AGI, we propose disentangling knowledge and reasoning through three key directions: (1) pretaining to reason using RL from scratch as an alternative to the widely used next-token prediction pretraining, (2) using a curriculum of synthetic tasks to ease the learning of a \textit{reasoning prior} for RL that can then be transferred to natural language tasks, and (3) learning more generalizable reasoning functions using a small context window to reduce exploiting spurious correlations between tokens. Such a reasoning system coupled with a trained retrieval system and a large external memory bank as a knowledge store can overcome several limitations of existing architectures at learning to reason in novel scenarios.
Abstract:Soft-actuated insect-scale micro aerial vehicles (IMAVs) pose unique challenges for designing robust and computationally efficient controllers. At the millimeter scale, fast robot dynamics ($\sim$ms), together with system delay, model uncertainty, and external disturbances significantly affect flight performances. Here, we design a deep reinforcement learning (RL) controller that addresses system delay and uncertainties. To initialize this neural network (NN) controller, we propose a modified behavior cloning (BC) approach with state-action re-matching to account for delay and domain-randomized expert demonstration to tackle uncertainty. Then we apply proximal policy optimization (PPO) to fine-tune the policy during RL, enhancing performance and smoothing commands. In simulations, our modified BC substantially increases the mean reward compared to baseline BC; and RL with PPO improves flight quality and reduces command fluctuations. We deploy this controller on two different insect-scale aerial robots that weigh 720 mg and 850 mg, respectively. The robots demonstrate multiple successful zero-shot hovering flights, with the longest lasting 50 seconds and root-mean-square errors of 1.34 cm in lateral direction and 0.05 cm in altitude, marking the first end-to-end deep RL-based flight on soft-driven IMAVs.
Abstract:Discovery of high-performance materials and molecules requires identifying extremes with property values that fall outside the known distribution. Therefore, the ability to extrapolate to out-of-distribution (OOD) property values is critical for both solid-state materials and molecular design. Our objective is to train predictor models that extrapolate zero-shot to higher ranges than in the training data, given the chemical compositions of solids or molecular graphs and their property values. We propose using a transductive approach to OOD property prediction, achieving improvements in prediction accuracy. In particular, the True Positive Rate (TPR) of OOD classification of materials and molecules improved by 3x and 2.5x, respectively, and precision improved by 2x and 1.5x compared to non-transductive baselines. Our method leverages analogical input-target relations in the training and test sets, enabling generalization beyond the training target support, and can be applied to any other material and molecular tasks.
Abstract:Diffusion Policies have become widely used in Imitation Learning, offering several appealing properties, such as generating multimodal and discontinuous behavior. As models are becoming larger to capture more complex capabilities, their computational demands increase, as shown by recent scaling laws. Therefore, continuing with the current architectures will present a computational roadblock. To address this gap, we propose Mixture-of-Denoising Experts (MoDE) as a novel policy for Imitation Learning. MoDE surpasses current state-of-the-art Transformer-based Diffusion Policies while enabling parameter-efficient scaling through sparse experts and noise-conditioned routing, reducing both active parameters by 40% and inference costs by 90% via expert caching. Our architecture combines this efficient scaling with noise-conditioned self-attention mechanism, enabling more effective denoising across different noise levels. MoDE achieves state-of-the-art performance on 134 tasks in four established imitation learning benchmarks (CALVIN and LIBERO). Notably, by pretraining MoDE on diverse robotics data, we achieve 4.01 on CALVIN ABC and 0.95 on LIBERO-90. It surpasses both CNN-based and Transformer Diffusion Policies by an average of 57% across 4 benchmarks, while using 90% fewer FLOPs and fewer active parameters compared to default Diffusion Transformer architectures. Furthermore, we conduct comprehensive ablations on MoDE's components, providing insights for designing efficient and scalable Transformer architectures for Diffusion Policies. Code and demonstrations are available at https://mbreuss.github.io/MoDE_Diffusion_Policy/.
Abstract:Humans distill complex experiences into fundamental abstractions that enable rapid learning and adaptation. Similarly, autoregressive transformers exhibit adaptive learning through in-context learning (ICL), which begs the question of how. In this paper, we propose \textbf{concept encoding-decoding mechanism} to explain ICL by studying how transformers form and use internal abstractions in their representations. On synthetic ICL tasks, we analyze the training dynamics of a small transformer and report the coupled emergence of concept encoding and decoding. As the model learns to encode different latent concepts (e.g., ``Finding the first noun in a sentence.") into distinct, separable representations, it concureently builds conditional decoding algorithms and improve its ICL performance. We validate the existence of this mechanism across pretrained models of varying scales (Gemma-2 2B/9B/27B, Llama-3.1 8B/70B). Further, through mechanistic interventions and controlled finetuning, we demonstrate that the quality of concept encoding is causally related and predictive of ICL performance. Our empirical insights shed light into better understanding the success and failure modes of large language models via their representations.
Abstract:Scaling robot learning requires data collection pipelines that scale favorably with human effort. In this work, we propose Crowdsourcing and Amortizing Human Effort for Real-to-Sim-to-Real(CASHER), a pipeline for scaling up data collection and learning in simulation where the performance scales superlinearly with human effort. The key idea is to crowdsource digital twins of real-world scenes using 3D reconstruction and collect large-scale data in simulation, rather than the real-world. Data collection in simulation is initially driven by RL, bootstrapped with human demonstrations. As the training of a generalist policy progresses across environments, its generalization capabilities can be used to replace human effort with model generated demonstrations. This results in a pipeline where behavioral data is collected in simulation with continually reducing human effort. We show that CASHER demonstrates zero-shot and few-shot scaling laws on three real-world tasks across diverse scenarios. We show that CASHER enables fine-tuning of pre-trained policies to a target scenario using a video scan without any additional human effort. See our project website: https://casher-robot-learning.github.io/CASHER/
Abstract:Language-conditioned robot models (i.e., robotic foundation models) enable robots to perform a wide range of tasks based on natural language instructions. Despite strong performance on existing benchmarks, evaluating the safety and effectiveness of these models is challenging due to the complexity of testing all possible language variations. Current benchmarks have two key limitations: they rely on a limited set of human-generated instructions, missing many challenging cases, and they focus only on task performance without assessing safety, such as avoiding damage. To address these gaps, we introduce Embodied Red Teaming (ERT), a new evaluation method that generates diverse and challenging instructions to test these models. ERT uses automated red teaming techniques with Vision Language Models (VLMs) to create contextually grounded, difficult instructions. Experimental results show that state-of-the-art models frequently fail or behave unsafely on ERT tests, underscoring the shortcomings of current benchmarks in evaluating real-world performance and safety. Code and videos are available at: https://sites.google.com/view/embodiedredteam.
Abstract:Learning the intents of an agent, defined by its goals or motion style, is often extremely challenging from just a few examples. We refer to this problem as task concept learning and present our approach, Few-Shot Task Learning through Inverse Generative Modeling (FTL-IGM), which learns new task concepts by leveraging invertible neural generative models. The core idea is to pretrain a generative model on a set of basic concepts and their demonstrations. Then, given a few demonstrations of a new concept (such as a new goal or a new action), our method learns the underlying concepts through backpropagation without updating the model weights, thanks to the invertibility of the generative model. We evaluate our method in five domains -- object rearrangement, goal-oriented navigation, motion caption of human actions, autonomous driving, and real-world table-top manipulation. Our experimental results demonstrate that via the pretrained generative model, we successfully learn novel concepts and generate agent plans or motion corresponding to these concepts in (1) unseen environments and (2) in composition with training concepts.
Abstract:The quest to build a generalist robotic system is impeded by the scarcity of diverse and high-quality data. While real-world data collection effort exist, requirements for robot hardware, physical environment setups, and frequent resets significantly impede the scalability needed for modern learning frameworks. We introduce DART, a teleoperation platform designed for crowdsourcing that reimagines robotic data collection by leveraging cloud-based simulation and augmented reality (AR) to address many limitations of prior data collection efforts. Our user studies highlight that DART enables higher data collection throughput and lower physical fatigue compared to real-world teleoperation. We also demonstrate that policies trained using DART-collected datasets successfully transfer to reality and are robust to unseen visual disturbances. All data collected through DART is automatically stored in our cloud-hosted database, DexHub, which will be made publicly available upon curation, paving the path for DexHub to become an ever-growing data hub for robot learning. Videos are available at: https://dexhub.ai/project
Abstract:In this work, we explore the limitations of combining models by averaging intermediate features, referred to as model merging, and propose a new direction for achieving collective model intelligence through what we call compatible specialization. Current methods for model merging, such as parameter and feature averaging, struggle to effectively combine specialized models due to representational divergence during fine-tuning. As models specialize to their individual domains, their internal feature representations become increasingly incompatible, leading to poor performance when attempting to merge them for new tasks. We analyze this phenomenon using centered kernel alignment (CKA) and show that as models specialize, the similarity in their feature space structure diminishes, hindering their capacity for collective use. To address these challenges, we investigate routing-based merging strategies, which offer more flexible methods for combining specialized models by dynamically routing across different layers. This allows us to improve on existing methods by combining features from multiple layers rather than relying on fixed, layer-wise combinations. However, we find that these approaches still face limitations when layers within models are representationally incompatible. Our findings highlight the importance of designing new approaches for model merging that operate on well-defined input and output spaces, similar to how humans communicate through language rather than intermediate neural activations.