Picture for Ian Adelstein

Ian Adelstein

Exploring the Manifold of Neural Networks Using Diffusion Geometry

Add code
Nov 19, 2024
Viaarxiv icon

Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds

Add code
Oct 16, 2024
Figure 1 for Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Figure 2 for Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Figure 3 for Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Figure 4 for Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Viaarxiv icon

Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy

Add code
Dec 04, 2023
Viaarxiv icon

BLIS-Net: Classifying and Analyzing Signals on Graphs

Add code
Oct 26, 2023
Viaarxiv icon

A Flow Artist for High-Dimensional Cellular Data

Add code
Jul 31, 2023
Viaarxiv icon

Neural FIM for learning Fisher Information Metrics from point cloud data

Add code
Jun 12, 2023
Viaarxiv icon

A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction

Add code
May 30, 2023
Viaarxiv icon

Diffusion Curvature for Estimating Local Curvature in High Dimensional Data

Add code
Jun 08, 2022
Figure 1 for Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
Figure 2 for Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
Figure 3 for Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
Figure 4 for Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
Viaarxiv icon