Abstract:In the development of wireless communication technology, multiple-input multiple-output (MIMO) technology has emerged as a key enabler, significantly enhancing the capacity of communication systems. However, traditional MIMO systems, which rely on fixed-position antennas (FPAs) with spacing limitations, cannot fully exploit the channel variations in the continuous spatial domain, thus limiting the system's spatial multiplexing performance and diversity. To address these limitations, movable antennas (MAs) have been introduced, offering a breakthrough in signal processing and spatial multiplexing by overcoming the constraints of FPA-based systems. Furthermore, this paper extends the functionality of MAs by introducing movable rotatable antennas (MRAs), which enhance the system's ability to optimize performance in the spatial domain by adding rotational degrees of freedom. By incorporating a dynamic precoding framework based on both antenna position and rotation angle optimization, and employing the zero-forcing (ZF) precoding method, this paper proposes an efficient optimization approach aimed at improving signal quality, mitigating interference, and solving the non-linear, constrained optimization problem using the sequential quadratic programming (SQP) algorithm. This approach effectively enhances the communication system's performance.
Abstract:This survey provides a comprehensive review on recent advancements of generative learning models in robotic manipulation, addressing key challenges in the field. Robotic manipulation faces critical bottlenecks, including significant challenges in insufficient data and inefficient data acquisition, long-horizon and complex task planning, and the multi-modality reasoning ability for robust policy learning performance across diverse environments. To tackle these challenges, this survey introduces several generative model paradigms, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), diffusion models, probabilistic flow models, and autoregressive models, highlighting their strengths and limitations. The applications of these models are categorized into three hierarchical layers: the Foundation Layer, focusing on data generation and reward generation; the Intermediate Layer, covering language, code, visual, and state generation; and the Policy Layer, emphasizing grasp generation and trajectory generation. Each layer is explored in detail, along with notable works that have advanced the state of the art. Finally, the survey outlines future research directions and challenges, emphasizing the need for improved efficiency in data utilization, better handling of long-horizon tasks, and enhanced generalization across diverse robotic scenarios. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/GAI4Manipulation/AwesomeGAIManipulation
Abstract:A high-fidelity digital simulation environment is crucial for accurately replicating physical operational processes. However, inconsistencies between simulation and physical environments result in low confidence in simulation outcomes, limiting their effectiveness in guiding real-world production. Unlike the traditional step-by-step point cloud "segmentation-registration" generation method, this paper introduces, for the first time, a novel Multi-Robot Manufacturing Digital Scene Generation (MRG) method that leverages multi-instance point cloud registration, specifically within manufacturing scenes. Tailored to the characteristics of industrial robots and manufacturing settings, an instance-focused transformer module is developed to delineate instance boundaries and capture correlations between local regions. Additionally, a hypothesis generation module is proposed to extract target instances while preserving key features. Finally, an efficient screening and optimization algorithm is designed to refine the final registration results. Experimental evaluations on the Scan2CAD and Welding-Station datasets demonstrate that: (1) the proposed method outperforms existing multi-instance point cloud registration techniques; (2) compared to state-of-the-art methods, the Scan2CAD dataset achieves improvements in MR and MP by 12.15% and 17.79%, respectively; and (3) on the Welding-Station dataset, MR and MP are enhanced by 16.95% and 24.15%, respectively. This work marks the first application of multi-instance point cloud registration in manufacturing scenes, significantly advancing the precision and reliability of digital simulation environments for industrial applications.
Abstract:In this paper, we study the whole-body loco-manipulation problem using reinforcement learning (RL). Specifically, we focus on the problem of how to coordinate the floating base and the robotic arm of a wheeled-quadrupedal manipulator robot to achieve direct six-dimensional (6D) end-effector (EE) pose tracking in task space. Different from conventional whole-body loco-manipulation problems that track both floating-base and end-effector commands, the direct EE pose tracking problem requires inherent balance among redundant degrees of freedom in the whole-body motion. We leverage RL to solve this challenging problem. To address the associated difficulties, we develop a novel reward fusion module (RFM) that systematically integrates reward terms corresponding to different tasks in a nonlinear manner. In such a way, the inherent multi-stage and hierarchical feature of the loco-manipulation problem can be carefully accommodated. By combining the proposed RFM with the a teacher-student RL training paradigm, we present a complete RL scheme to achieve 6D EE pose tracking for the wheeled-quadruped manipulator robot. Extensive simulation and hardware experiments demonstrate the significance of the RFM. In particular, we enable smooth and precise tracking performance, achieving state-of-the-art tracking position error of less than 5 cm, and rotation error of less than 0.1 rad. Please refer to https://clearlab-sustech.github.io/RFM_loco_mani/ for more experimental videos.
Abstract:Automatic synthesis of analog circuits presents significant challenges. Existing methods usually treat the task as optimization problems, which limits their transferability and reusability for new requirements. To address this limitation, we introduce a task that directly generates analog circuits based on specified specifications, termed specification-conditioned analog circuit generation. Specifically, we propose CktGen, a simple yet effective variational autoencoder (VAE) model, that maps specifications and circuits into a joint latent space, and reconstructs the circuit from the latent. Moreover, given that a single specification can correspond to multiple distinct circuits, simply minimizing the distance between the mapped latent representations of the circuit and specification does not capture these one-to-many relationships. To address this, we integrate contrastive learning and classifier guidance to prevent model collapse. We conduct comprehensive experiments on the Open Circuit Benchmark (OCB) and introduce new evaluation metrics for cross-model consistency in the specification-to-circuit generation task. Experimental results demonstrate substantial improvements over existing state-of-the-art methods.
Abstract:With recent rapid growth in online shopping, AI-powered Engagement Surfaces (ES) have become ubiquitous across retail services. These engagement surfaces perform an increasing range of functions, including recommending new products for purchase, reminding customers of their orders and providing delivery notifications. Understanding the causal effect of engagement surfaces on value driven for customers and businesses remains an open scientific question. In this paper, we develop a dynamic causal model at scale to disentangle value attributable to an ES, and to assess its effectiveness. We demonstrate the application of this model to inform business decision-making by understanding returns on investment in the ES, and identifying product lines and features where the ES adds the most value.
Abstract:Dynamic metasurface antennas (DMAs) represent a novel transceiver array architecture for extremely large-scale (XL) communications, offering the advantages of reduced power consumption and lower hardware costs compared to conventional arrays. This paper focuses on near-field channel estimation for XL-DMAs. We begin by analyzing the near-field characteristics of uniform planar arrays (UPAs) and introducing the Oblong Approx. model. This model decouples elevation-azimuth (EL-AZ) parameters for XL-DMAs, providing an effective means to characterize the near-field effect. It offers simpler mathematical expressions than the second-order Taylor expansion model, all while maintaining negligible model errors for oblong-shaped arrays. Building on the Oblong Approx. model, we propose an EL-AZ-decoupled estimation framework that involves near- and far-field parameter estimation for AZ/EL and EL/AZ directions, respectively. The former is formulated as a distributed compressive sensing problem, addressed using the proposed off-grid distributed orthogonal least squares algorithm, while the latter involves a straightforward parallelizable search. Crucially, we illustrate the viability of decoupled EL-AZ estimation for near-field UPAs, exhibiting commendable performance and linear complexity correlated with the number of metasurface elements. Moreover, we design an measurement matrix optimization method with the Lorentzian constraint on DMAs and highlight the estimation performance degradation resulting from this constraint.
Abstract:Thanks to the explosive developments of data-driven learning methodologies recently, reinforcement learning (RL) emerges as a promising solution to address the legged locomotion problem in robotics. In this manuscript, we propose a novel concurrent teacher-student reinforcement learning architecture for legged locomotion over challenging terrains, based only on proprioceptive measurements in real-world deployment. Different from convectional teacher-student architecture that trains the teacher policy via RL and transfers the knowledge to the student policy through supervised learning, our proposed architecture trains teacher and student policy networks concurrently under the reinforcement learning paradigm. To achieve this, we develop a new training scheme based on conventional proximal policy gradient (PPO) method to accommodate the interaction between teacher policy network and student policy network. The effectiveness of the proposed architecture as well as the new training scheme is demonstrated through extensive indoor and outdoor experiments on quadrupedal robots and point-foot bipedal robot, showcasing robust locomotion over challenging terrains and improved performance compared to two-stage training methods.
Abstract:Object pose refinement is essential for robust object pose estimation. Previous work has made significant progress towards instance-level object pose refinement. Yet, category-level pose refinement is a more challenging problem due to large shape variations within a category and the discrepancies between the target object and the shape prior. To address these challenges, we introduce a novel architecture for category-level object pose refinement. Our approach integrates an HS-layer and learnable affine transformations, which aims to enhance the extraction and alignment of geometric information. Additionally, we introduce a cross-cloud transformation mechanism that efficiently merges diverse data sources. Finally, we push the limits of our model by incorporating the shape prior information for translation and size error prediction. We conducted extensive experiments to demonstrate the effectiveness of the proposed framework. Through extensive quantitative experiments, we demonstrate significant improvement over the baseline method by a large margin across all metrics.
Abstract:In robotic insertion tasks where the uncertainty exceeds the allowable tolerance, a good search strategy is essential for successful insertion and significantly influences efficiency. The commonly used blind search method is time-consuming and does not exploit the rich contact information. In this paper, we propose a novel search strategy that actively utilizes the information contained in the contact configuration and shows high efficiency. In particular, we formulate this problem as a Partially Observable Markov Decision Process (POMDP) with carefully designed primitives based on an in-depth analysis of the contact configuration's static stability. From the formulated POMDP, we can derive a novel search strategy. Thanks to its simplicity, this search strategy can be incorporated into a Finite-State-Machine (FSM) controller. The behaviors of the FSM controller are realized through a low-level Cartesian Impedance Controller. Our method is based purely on the robot's proprioceptive sensing and does not need visual or tactile sensors. To evaluate the effectiveness of our proposed strategy and control framework, we conduct extensive comparison experiments in simulation, where we compare our method with the baseline approach. The results demonstrate that our proposed method achieves a higher success rate with a shorter search time and search trajectory length compared to the baseline method. Additionally, we show that our method is robust to various initial displacement errors.