Abstract:Causal Impact (CI) of customer actions are broadly used across the industry to inform both short- and long-term investment decisions of various types. In this paper, we apply the double machine learning (DML) methodology to estimate the CI values across 100s of customer actions of business interest and 100s of millions of customers. We operationalize DML through a causal ML library based on Spark with a flexible, JSON-driven model configuration approach to estimate CI at scale (i.e., across hundred of actions and millions of customers). We outline the DML methodology and implementation, and associated benefits over the traditional potential outcomes based CI model. We show population-level as well as customer-level CI values along with confidence intervals. The validation metrics show a 2.2% gain over the baseline methods and a 2.5X gain in the computational time. Our contribution is to advance the scalable application of CI, while also providing an interface that allows faster experimentation, cross-platform support, ability to onboard new use cases, and improves accessibility of underlying code for partner teams.
Abstract:With recent rapid growth in online shopping, AI-powered Engagement Surfaces (ES) have become ubiquitous across retail services. These engagement surfaces perform an increasing range of functions, including recommending new products for purchase, reminding customers of their orders and providing delivery notifications. Understanding the causal effect of engagement surfaces on value driven for customers and businesses remains an open scientific question. In this paper, we develop a dynamic causal model at scale to disentangle value attributable to an ES, and to assess its effectiveness. We demonstrate the application of this model to inform business decision-making by understanding returns on investment in the ES, and identifying product lines and features where the ES adds the most value.
Abstract:We develop a Causal-Deep Neural Network (CDNN) model trained in two stages to infer causal impact estimates at an individual unit level. Using only the pre-treatment features in stage 1 in the absence of any treatment information, we learn an encoding for the covariates that best represents the outcome. In the $2^{nd}$ stage we further seek to predict the unexplained outcome from stage 1, by introducing the treatment indicator variables alongside the encoded covariates. We prove that even without explicitly computing the treatment residual, our method still satisfies the desirable local Neyman orthogonality, making it robust to small perturbations in the nuisance parameters. Furthermore, by establishing connections with the representation learning approaches, we create a framework from which multiple variants of our algorithm can be derived. We perform initial experiments on the publicly available data sets to compare these variants and get guidance in selecting the best variant of our CDNN method. On evaluating CDNN against the state-of-the-art approaches on three benchmarking datasets, we observe that CDNN is highly competitive and often yields the most accurate individual treatment effect estimates. We highlight the strong merits of CDNN in terms of its extensibility to multiple use cases.