Abstract:The exponential rise in data generation has led to vast, heterogeneous datasets crucial for predictive analytics and decision-making. Ensuring data quality and semantic integrity remains a challenge. This paper presents a brain-inspired distributed cognitive framework that integrates deep learning with Hopfield networks to identify and link semantically related attributes across datasets. Modeled on the dual-hemisphere functionality of the human brain, the right hemisphere assimilates new information while the left retrieves learned representations for association. Our architecture, implemented on MapReduce with Hadoop Distributed File System (HDFS), leverages deep Hopfield networks as an associative memory mechanism to enhance recall of frequently co-occurring attributes and dynamically adjust relationships based on evolving data patterns. Experiments show that associative imprints in Hopfield memory are reinforced over time, ensuring linked datasets remain contextually meaningful and improving data disambiguation and integration accuracy. Our results indicate that combining deep Hopfield networks with distributed cognitive processing offers a scalable, biologically inspired approach to managing complex data relationships in large-scale environments.
Abstract:With recent rapid growth in online shopping, AI-powered Engagement Surfaces (ES) have become ubiquitous across retail services. These engagement surfaces perform an increasing range of functions, including recommending new products for purchase, reminding customers of their orders and providing delivery notifications. Understanding the causal effect of engagement surfaces on value driven for customers and businesses remains an open scientific question. In this paper, we develop a dynamic causal model at scale to disentangle value attributable to an ES, and to assess its effectiveness. We demonstrate the application of this model to inform business decision-making by understanding returns on investment in the ES, and identifying product lines and features where the ES adds the most value.