Sichuan University
Abstract:Medical dialogue systems aim to provide medical services through patient-agent conversations. Previous methods typically regard patients as ideal users, focusing mainly on common challenges in dialogue systems, while neglecting the potential biases or misconceptions that might be introduced by real patients, who are typically non-experts. This study investigates the discrepancy between patients' expressions during medical consultations and their actual health conditions, defined as patient hallucination. Such phenomena often arise from patients' lack of knowledge and comprehension, concerns, and anxieties, resulting in the transmission of inaccurate or wrong information during consultations. To address this issue, we propose MedPH, a Medical dialogue generation method for mitigating the problem of Patient Hallucinations designed to detect and cope with hallucinations. MedPH incorporates a detection method that utilizes one-dimensional structural entropy over a temporal dialogue entity graph, and a mitigation strategy based on hallucination-related information to guide patients in expressing their actual conditions. Experimental results indicate the high effectiveness of MedPH when compared to existing approaches in both medical entity prediction and response generation tasks, while also demonstrating its effectiveness in mitigating hallucinations within interactive scenarios.
Abstract:Automatic extraction of procedural graphs from documents creates a low-cost way for users to easily understand a complex procedure by skimming visual graphs. Despite the progress in recent studies, it remains unanswered: whether the existing studies have well solved this task (Q1) and whether the emerging large language models (LLMs) can bring new opportunities to this task (Q2). To this end, we propose a new benchmark PAGED, equipped with a large high-quality dataset and standard evaluations. It investigates five state-of-the-art baselines, revealing that they fail to extract optimal procedural graphs well because of their heavy reliance on hand-written rules and limited available data. We further involve three advanced LLMs in PAGED and enhance them with a novel self-refine strategy. The results point out the advantages of LLMs in identifying textual elements and their gaps in building logical structures. We hope PAGED can serve as a major landmark for automatic procedural graph extraction and the investigations in PAGED can offer insights into the research on logic reasoning among non-sequential elements.
Abstract:It is time-saving to build a reading assistant for customer service representations (CSRs) when reading user manuals, especially information-rich ones. Current solutions don't fit the online custom service scenarios well due to the lack of attention to user questions and possible responses. Hence, we propose to develop a time-saving and careful reading assistant for CSRs, named CARE. It can help the CSRs quickly find proper responses from the user manuals via explicit clue chains. Specifically, each of the clue chains is formed by inferring over the user manuals, starting from the question clue aligned with the user question and ending at a possible response. To overcome the shortage of supervised data, we adopt the self-supervised strategy for model learning. The offline experiment shows that CARE is efficient in automatically inferring accurate responses from the user manual. The online experiment further demonstrates the superiority of CARE to reduce CSRs' reading burden and keep high service quality, in particular with >35% decrease in time spent and keeping a >0.75 ICC score.
Abstract:Large language models (LLMs) are increasingly used to meet user information needs, but their effectiveness in dealing with user queries that contain various types of ambiguity remains unknown, ultimately risking user trust and satisfaction. To this end, we introduce CLAMBER, a benchmark for evaluating LLMs using a well-organized taxonomy. Building upon the taxonomy, we construct ~12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs. Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries, even enhanced by chain-of-thought (CoT) and few-shot prompting. These techniques may result in overconfidence in LLMs and yield only marginal enhancements in identifying ambiguity. Furthermore, current LLMs fall short in generating high-quality clarifying questions due to a lack of conflict resolution and inaccurate utilization of inherent knowledge. In this paper, CLAMBER presents a guidance and promotes further research on proactive and trustworthy LLMs. Our dataset is available at https://github.com/zt991211/CLAMBER
Abstract:We investigate non-collaborative dialogue agents that must engage in tailored strategic planning for diverse users to secure a favorable agreement. This poses challenges for existing dialogue agents due to two main reasons: their inability to integrate user-specific characteristics into their strategic planning and their training paradigm's failure to produce strategic planners that can generalize to diverse users. To address these challenges, we propose TRIP to enhance the capability in tailored strategic planning, incorporating a user-aware strategic planning module and a population-based training paradigm. Through experiments on benchmark non-collaborative dialogue tasks, we demonstrate the effectiveness of TRIP in catering to diverse users.
Abstract:Accurate knowledge selection is critical in knowledge-grounded dialogue systems. Towards a closer look at it, we offer a novel perspective to organize existing literature, i.e., knowledge selection coupled with, after, and before generation. We focus on the third under-explored category of study, which can not only select knowledge accurately in advance, but has the advantage to reduce the learning, adjustment, and interpretation burden of subsequent response generation models, especially LLMs. We propose GATE, a generator-agnostic knowledge selection method, to prepare knowledge for subsequent response generation models by selecting context-related knowledge among different knowledge structures and variable knowledge requirements. Experimental results demonstrate the superiority of GATE, and indicate that knowledge selection before generation is a lightweight yet effective way to facilitate LLMs (e.g., ChatGPT) to generate more informative responses.
Abstract:Towards sufficient music searching, it is vital to form a complete set of labels for each song. However, current solutions fail to resolve it as they cannot produce diverse enough mappings to make up for the information missed by the gold labels. Based on the observation that such missing information may already be presented in user comments, we propose to study the automated music labeling in an essential but under-explored setting, where the model is required to harvest more diverse and valid labels from the users' comments given limited gold labels. To this end, we design an iterative framework (DiVa) to harvest more $\underline{\text{Di}}$verse and $\underline{\text{Va}}$lid labels from user comments for music. The framework makes a classifier able to form complete sets of labels for songs via pseudo-labels inferred from pre-trained classifiers and a novel joint score function. The experiment on a densely annotated testing set reveals the superiority of the Diva over state-of-the-art solutions in producing more diverse labels missed by the gold labels. We hope our work can inspire future research on automated music labeling.
Abstract:The machine reading comprehension (MRC) of user manuals has huge potential in customer service. However,current methods have trouble answering complex questions. Therefore, we introduce the Knowing-how & Knowing-that task that requires the model to answer factoid-style, procedure-style, and inconsistent questions about user manuals. We resolve this task by jointly representing the steps and facts in a graph (TARA), which supports a unified inference of various questions. Towards a systematical benchmarking study, we design a heuristic method to automatically parse user manuals into TARAs and build an annotated dataset to test the model's ability in answering real-world questions. Empirical results demonstrate that representing user manuals as TARAs is a desired solution for the MRC of user manuals. An in-depth investigation of TARA further sheds light on the issues and broader impacts of future representations of user manuals. We hope our work can move the MRC of user manuals to a more complex and realistic stage.
Abstract:Proactive dialogue system is able to lead the conversation to a goal topic and has advantaged potential in bargain, persuasion and negotiation. Current corpus-based learning manner limits its practical application in real-world scenarios. To this end, we contribute to advance the study of the proactive dialogue policy to a more natural and challenging setting, i.e., interacting dynamically with users. Further, we call attention to the non-cooperative user behavior -- the user talks about off-path topics when he/she is not satisfied with the previous topics introduced by the agent. We argue that the targets of reaching the goal topic quickly and maintaining a high user satisfaction are not always converge, because the topics close to the goal and the topics user preferred may not be the same. Towards this issue, we propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting. Specifically, we learn the trade-off via a learned goal weight, which consists of four factors (dialogue turn, goal completion difficulty, user satisfaction estimation, and cooperative degree). The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.
Abstract:In the question answering(QA) task, multi-hop reasoning framework has been extensively studied in recent years to perform more efficient and interpretable answer reasoning on the Knowledge Graph(KG). However, multi-hop reasoning is inapplicable for answering n-ary fact questions due to its linear reasoning nature. We discover that there are two feasible improvements: 1) upgrade the basic reasoning unit from entity or relation to fact; and 2) upgrade the reasoning structure from chain to tree. Based on these, we propose a novel fact-tree reasoning framework, through transforming the question into a fact tree and performing iterative fact reasoning on it to predict the correct answer. Through a comprehensive evaluation on the n-ary fact KGQA dataset introduced by this work, we demonstrate that the proposed fact-tree reasoning framework has the desired advantage of high answer prediction accuracy. In addition, we also evaluate the fact-tree reasoning framework on two binary KGQA datasets and show that our approach also has a strong reasoning ability compared with several excellent baselines. This work has direct implications for exploring complex reasoning scenarios and provides a preliminary baseline approach.