Abstract:Cross-Domain Recommendation (CDR) is a promising paradigm inspired by transfer learning to solve the cold-start problem in recommender systems. Existing state-of-the-art CDR methods train an explicit mapping function to transfer the cold-start users from a data-rich source domain to a target domain. However, a limitation of these methods is that the mapping function is trained on overlapping users across domains, while only a small number of overlapping users are available for training. By visualizing the loss landscape of the existing CDR model, we find that training on a small number of overlapping users causes the model to converge to sharp minima, leading to poor generalization. Based on this observation, we leverage loss-geometry-based machine learning approach and propose a novel CDR method called Sharpness-Aware CDR (SCDR). Our proposed method simultaneously optimizes recommendation loss and loss sharpness, leading to better generalization with theoretical guarantees. Empirical studies on real-world datasets demonstrate that SCDR significantly outperforms the other CDR models for cold-start recommendation tasks, while concurrently enhancing the model's robustness to adversarial attacks.
Abstract:Uncertain changes in data streams present challenges for machine learning models to dynamically adapt and uphold performance in real-time. Particularly, classification boundary change, also known as real concept drift, is the major cause of classification performance deterioration. However, accurately detecting real concept drift remains challenging because the theoretical foundations of existing drift detection methods - two-sample distribution tests and monitoring classification error rate, both suffer from inherent limitations such as the inability to distinguish virtual drift (changes not affecting the classification boundary, will introduce unnecessary model maintenance), limited statistical power, or high computational cost. Furthermore, no existing detection method can provide information on the trend of the drift, which could be invaluable for model maintenance. This work presents a novel real concept drift detection method based on Neighbor-Searching Discrepancy, a new statistic that measures the classification boundary difference between two samples. The proposed method is able to detect real concept drift with high accuracy while ignoring virtual drift. It can also indicate the direction of the classification boundary change by identifying the invasion or retreat of a certain class, which is also an indicator of separability change between classes. A comprehensive evaluation of 11 experiments is conducted, including empirical verification of the proposed theory using artificial datasets, and experimental comparisons with commonly used drift handling methods on real-world datasets. The results show that the proposed theory is robust against a range of distributions and dimensions, and the drift detection method outperforms state-of-the-art alternative methods.
Abstract:Deep reinforcement learning is used in various domains, but usually under the assumption that the environment has stationary conditions like transitions and state distributions. When this assumption is not met, performance suffers. For this reason, tracking continuous environmental changes and adapting to unpredictable conditions is challenging yet crucial because it ensures that systems remain reliable and flexible in practical scenarios. Our research introduces Behavior-Aware Detection and Adaptation (BADA), an innovative framework that merges environmental change detection with behavior adaptation. The key inspiration behind our method is that policies exhibit different global behaviors in changing environments. Specifically, environmental changes are identified by analyzing variations between behaviors using Wasserstein distances without manually set thresholds. The model adapts to the new environment through behavior regularization based on the extent of changes. The results of a series of experiments demonstrate better performance relative to several current algorithms. This research also indicates significant potential for tackling this long-standing challenge.
Abstract:Column generation (CG) is a well-established method for solving large-scale linear programs. It involves iteratively optimizing a subproblem containing a subset of columns and using its dual solution to generate new columns with negative reduced costs. This process continues until the dual values converge to the optimal dual solution to the original problem. A natural phenomenon in CG is the heavy oscillation of the dual values during iterations, which can lead to a substantial slowdown in the convergence rate. Stabilization techniques are devised to accelerate the convergence of dual values by using information beyond the state of the current subproblem. However, there remains a significant gap in obtaining more accurate dual values at an earlier stage. To further narrow this gap, this paper introduces a novel approach consisting of 1) a machine learning approach for accurate prediction of optimal dual solutions and 2) an adaptive stabilization technique that effectively capitalizes on accurate predictions. On the graph coloring problem, we show that our method achieves a significantly improved convergence rate compared to traditional methods.
Abstract:Shifting the focus from principles to practical implementation, responsible artificial intelligence (AI) has garnered considerable attention across academia, industry, and society at large. Despite being in its nascent stages, this emerging field grapples with nebulous concepts and intricate knowledge frameworks. By analyzing three prevailing concepts - explainable AI, trustworthy AI, and ethical AI, this study defined responsible AI and identified its core principles. Methodologically, this study successfully demonstrated the implementation of leveraging AI's capabilities into bibliometrics for enhanced knowledge discovery and the cross-validation of experimentally examined models with domain insights. Empirically, this study investigated 17,799 research articles contributed by the AI community since 2015. This involves recognizing key technological players and their relationships, unveiling the topical landscape and hierarchy of responsible AI, charting its evolution, and elucidating the interplay between the responsibility principles and primary AI techniques. An analysis of a core cohort comprising 380 articles from multiple disciplines captures the most recent advancements in responsible AI. As one of the pioneering bibliometric studies dedicated to exploring responsible AI, this study will provide comprehensive macro-level insights, enhancing the understanding of responsible AI while furnishing valuable knowledge support for AI regulation and governance initiatives.
Abstract:Multistream classification poses significant challenges due to the necessity for rapid adaptation in dynamic streaming processes with concept drift. Despite the growing research outcomes in this area, there has been a notable oversight regarding the temporal dynamic relationships between these streams, leading to the issue of negative transfer arising from irrelevant data. In this paper, we propose a novel Online Boosting Adaptive Learning (OBAL) method that effectively addresses this limitation by adaptively learning the dynamic correlation among different streams. Specifically, OBAL operates in a dual-phase mechanism, in the first of which we design an Adaptive COvariate Shift Adaptation (AdaCOSA) algorithm to construct an initialized ensemble model using archived data from various source streams, thus mitigating the covariate shift while learning the dynamic correlations via an adaptive re-weighting strategy. During the online process, we employ a Gaussian Mixture Model-based weighting mechanism, which is seamlessly integrated with the acquired correlations via AdaCOSA to effectively handle asynchronous drift. This approach significantly improves the predictive performance and stability of the target stream. We conduct comprehensive experiments on several synthetic and real-world data streams, encompassing various drifting scenarios and types. The results clearly demonstrate that OBAL achieves remarkable advancements in addressing multistream classification problems by effectively leveraging positive knowledge derived from multiple sources.
Abstract:Out-of-distribution (OOD) detection is crucial to modern deep learning applications by identifying and alerting about the OOD samples that should not be tested or used for making predictions. Current OOD detection methods have made significant progress when in-distribution (ID) and OOD samples are drawn from static distributions. However, this can be unrealistic when applied to real-world systems which often undergo continuous variations and shifts in ID and OOD distributions over time. Therefore, for an effective application in real-world systems, the development of OOD detection methods that can adapt to these dynamic and evolving distributions is essential. In this paper, we propose a novel and more realistic setting called continuously adaptive out-of-distribution (CAOOD) detection which targets on developing an OOD detection model that enables dynamic and quick adaptation to a new arriving distribution, with insufficient ID samples during deployment time. To address CAOOD, we develop meta OOD learning (MOL) by designing a learning-to-adapt diagram such that a good initialized OOD detection model is learned during the training process. In the testing process, MOL ensures OOD detection performance over shifting distributions by quickly adapting to new distributions with a few adaptations. Extensive experiments on several OOD benchmarks endorse the effectiveness of our method in preserving both ID classification accuracy and OOD detection performance on continuously shifting distributions.
Abstract:As a powerful Bayesian non-parameterized algorithm, the Gaussian process (GP) has performed a significant role in Bayesian optimization and signal processing. GPs have also advanced online decision-making systems because their posterior distribution has a closed-form solution. However, its training and inference process requires all historic data to be stored and the GP model to be trained from scratch. For those reasons, several online GP algorithms, such as O-SGPR and O-SVGP, have been specifically designed for streaming settings. In this paper, we present a new theoretical framework for online GPs based on the online probably approximately correct (PAC) Bayes theory. The framework offers both a guarantee of generalized performance and good accuracy. Instead of minimizing the marginal likelihood, our algorithm optimizes both the empirical risk function and a regularization item, which is in proportion to the divergence between the prior distribution and posterior distribution of parameters. In addition to its theoretical appeal, the algorithm performs well empirically on several regression datasets. Compared to other online GP algorithms, ours yields a generalization guarantee and very competitive accuracy.
Abstract:The theoretical analysis of multi-class classification has proved that the existing multi-class classification methods can train a classifier with high classification accuracy on the test set, when the instances are precise in the training and test sets with same distribution and enough instances can be collected in the training set. However, one limitation with multi-class classification has not been solved: how to improve the classification accuracy of multi-class classification problems when only imprecise observations are available. Hence, in this paper, we propose a novel framework to address a new realistic problem called multi-class classification with imprecise observations (MCIMO), where we need to train a classifier with fuzzy-feature observations. Firstly, we give the theoretical analysis of the MCIMO problem based on fuzzy Rademacher complexity. Then, two practical algorithms based on support vector machine and neural networks are constructed to solve the proposed new problem. Experiments on both synthetic and real-world datasets verify the rationality of our theoretical analysis and the efficacy of the proposed algorithms.
Abstract:Transfer learning where the behavior of extracting transferable knowledge from the source domain(s) and reusing this knowledge to target domain has become a research area of great interest in the field of artificial intelligence. Probabilistic graphical models (PGMs) have been recognized as a powerful tool for modeling complex systems with many advantages, e.g., the ability to handle uncertainty and possessing good interpretability. Considering the success of these two aforementioned research areas, it seems natural to apply PGMs to transfer learning. However, although there are already some excellent PGMs specific to transfer learning in the literature, the potential of PGMs for this problem is still grossly underestimated. This paper aims to boost the development of PGMs for transfer learning by 1) examining the pilot studies on PGMs specific to transfer learning, i.e., analyzing and summarizing the existing mechanisms particularly designed for knowledge transfer; 2) discussing examples of real-world transfer problems where existing PGMs have been successfully applied; and 3) exploring several potential research directions on transfer learning using PGM.