Abstract:Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single global model across robots that works ideally for all. But in practice one model may not be well suited for robots deployed in various environments. This paper proposes Federated-EmbedCluster (Fed-EC), a clustering-based federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments. The framework addresses the key federated learning challenge of deteriorating model performance of a single global model due to the presence of non-IID data across real-world robots. Extensive real-world experiments validate that Fed-EC reduces the communication size by 23x for each robot while matching the performance of centralized learning for goal-oriented navigation and outperforms local learning. Fed-EC can transfer previously learnt models to new robots that join the cluster.
Abstract:Under-canopy agricultural robots can enable various applications like precise monitoring, spraying, weeding, and plant manipulation tasks throughout the growing season. Autonomous navigation under the canopy is challenging due to the degradation in accuracy of RTK-GPS and the large variability in the visual appearance of the scene over time. In prior work, we developed a supervised learning-based perception system with semantic keypoint representation and deployed this in various field conditions. A large number of failures of this system can be attributed to the inability of the perception model to adapt to the domain shift encountered during deployment. In this paper, we propose a self-supervised online adaptation method for adapting the semantic keypoint representation using a visual foundational model, geometric prior, and pseudo labeling. Our preliminary experiments show that with minimal data and fine-tuning of parameters, the keypoint prediction model trained with labels on the source domain can be adapted in a self-supervised manner to various challenging target domains onboard the robot computer using our method. This can enable fully autonomous row-following capability in under-canopy robots across fields and crops without requiring human intervention.
Abstract:In visual Reinforcement Learning (RL), learning from pixel-based observations poses significant challenges on sample efficiency, primarily due to the complexity of extracting informative state representations from high-dimensional data. Previous methods such as contrastive-based approaches have made strides in improving sample efficiency but fall short in modeling the nuanced evolution of states. To address this, we introduce MOOSS, a novel framework that leverages a temporal contrastive objective with the help of graph-based spatial-temporal masking to explicitly model state evolution in visual RL. Specifically, we propose a self-supervised dual-component strategy that integrates (1) a graph construction of pixel-based observations for spatial-temporal masking, coupled with (2) a multi-level contrastive learning mechanism that enriches state representations by emphasizing temporal continuity and change of states. MOOSS advances the understanding of state dynamics by disrupting and learning from spatial-temporal correlations, which facilitates policy learning. Our comprehensive evaluation on multiple continuous and discrete control benchmarks shows that MOOSS outperforms previous state-of-the-art visual RL methods in terms of sample efficiency, demonstrating the effectiveness of our method. Our code is released at https://github.com/jsun57/MOOSS.
Abstract:Under-canopy agricultural robots require robust navigation capabilities to enable full autonomy but struggle with tight row turning between crop rows due to degraded GPS reception, visual aliasing, occlusion, and complex vehicle dynamics. We propose an imitation learning approach using diffusion policies to learn row turning behaviors from demonstrations provided by human operators or privileged controllers. Simulation experiments in a corn field environment show potential in learning this task with only visual observations and velocity states. However, challenges remain in maintaining control within rows and handling varied initial conditions, highlighting areas for future improvement.
Abstract:Tracking plant features is crucial for various agricultural tasks like phenotyping, pruning, or harvesting, but the unstructured, cluttered, and deformable nature of plant environments makes it a challenging task. In this context, the recent advancements in foundational models show promise in addressing this challenge. In our work, we propose PlantTrack where we utilize DINOv2 which provides high-dimensional features, and train a keypoint heatmap predictor network to identify the locations of semantic features such as fruits and leaves which are then used as prompts for point tracking across video frames using TAPIR. We show that with as few as 20 synthetic images for training the keypoint predictor, we achieve zero-shot Sim2Real transfer, enabling effective tracking of plant features in real environments.
Abstract:Successful deployment of mobile robots in unstructured domains requires an understanding of the environment and terrain to avoid hazardous areas, getting stuck, and colliding with obstacles. Traversability estimation--which predicts where in the environment a robot can travel--is one prominent approach that tackles this problem. Existing geometric methods may ignore important semantic considerations, while semantic segmentation approaches involve a tedious labeling process. Recent self-supervised methods reduce labeling tedium, but require additional data or models and tend to struggle to explicitly label untraversable areas. To address these limitations, we introduce a weakly-supervised method for relative traversability estimation. Our method involves manually annotating the relative traversability of a small number of point pairs, which significantly reduces labeling effort compared to traditional segmentation-based methods and avoids the limitations of self-supervised methods. We further improve the performance of our method through a novel cross-image labeling strategy and loss function. We demonstrate the viability and performance of our method through deployment on a mobile robot in outdoor environments.
Abstract:We present a vision-based navigation system for under-canopy agricultural robots using semantic keypoints. Autonomous under-canopy navigation is challenging due to the tight spacing between the crop rows ($\sim 0.75$ m), degradation in RTK-GPS accuracy due to multipath error, and noise in LiDAR measurements from the excessive clutter. Our system, CropFollow++, introduces modular and interpretable perception architecture with a learned semantic keypoint representation. We deployed CropFollow++ in multiple under-canopy cover crop planting robots on a large scale (25 km in total) in various field conditions and we discuss the key lessons learned from this.
Abstract:Open-world video instance segmentation is an important video understanding task. Yet most methods either operate in a closed-world setting, require an additional user-input, or use classic region-based proposals to identify never before seen objects. Further, these methods only assign a one-word label to detected objects, and don't generate rich object-centric descriptions. They also often suffer from highly overlapping predictions. To address these issues, we propose Open-World Video Instance Segmentation and Captioning (OW-VISCap), an approach to jointly segment, track, and caption previously seen or unseen objects in a video. For this, we introduce open-world object queries to discover never before seen objects without additional user-input. We generate rich and descriptive object-centric captions for each detected object via a masked attention augmented LLM input. We introduce an inter-query contrastive loss to ensure that the object queries differ from one another. Our generalized approach matches or surpasses state-of-the-art on three tasks: open-world video instance segmentation on the BURST dataset, dense video object captioning on the VidSTG dataset, and closed-world video instance segmentation on the OVIS dataset.
Abstract:A vital aspect of Indian Classical Music (ICM) is Raga, which serves as a melodic framework for compositions and improvisations alike. Raga Recognition is an important music information retrieval task in ICM as it can aid numerous downstream applications ranging from music recommendations to organizing huge music collections. In this work, we propose a deep learning based approach to Raga recognition. Our approach employs efficient pre possessing and learns temporal sequences in music data using Long Short Term Memory based Recurrent Neural Networks (LSTM-RNN). We train and test the network on smaller sequences sampled from the original audio while the final inference is performed on the audio as a whole. Our method achieves an accuracy of 88.1% and 97 % during inference on the Comp Music Carnatic dataset and its 10 Raga subset respectively making it the state-of-the-art for the Raga recognition task. Our approach also enables sequence ranking which aids us in retrieving melodic patterns from a given music data base that are closely related to the presented query sequence.
Abstract:Robotic harvesting has the potential to positively impact agricultural productivity, reduce costs, improve food quality, enhance sustainability, and to address labor shortage. In the rapidly advancing field of agricultural robotics, the necessity of training robots in a virtual environment has become essential. Generating training data to automatize the underlying computer vision tasks such as image segmentation, object detection and classification, also heavily relies on such virtual environments as synthetic data is often required to overcome the shortage and lack of variety of real data sets. However, physics engines commonly employed within the robotics community, such as ODE, Simbody, Bullet, and DART, primarily support motion and collision interaction of rigid bodies. This inherent limitation hinders experimentation and progress in handling non-rigid objects such as plants and crops. In this contribution, we present a plugin for the Gazebo simulation platform based on Cosserat rods to model plant motion. It enables the simulation of plants and their interaction with the environment. We demonstrate that, using our plugin, users can conduct harvesting simulations in Gazebo by simulating a robotic arm picking fruits and achieve results comparable to real-world experiments.