Abstract:Digital agriculture technologies rely on sensors, drones, robots, and autonomous farm equipment to improve farm yields and incorporate sustainability practices. However, the adoption of such technologies is severely limited by the lack of broadband connectivity in rural areas. We argue that farming applications do not require permanent always-on connectivity. Instead, farming activity and digital agriculture applications follow seasonal rhythms of agriculture. Therefore, the need for connectivity is highly localized in time and space. We introduce BYON, a new connectivity model for high bandwidth agricultural applications that relies on emerging connectivity solutions like citizens broadband radio service (CBRS) and satellite networks. BYON creates an agile connectivity solution that can be moved along a farm to create spatio-temporal connectivity bubbles. BYON incorporates a new gateway design that reacts to the presence of crops and optimizes coverage in agricultural settings. We evaluate BYON in a production farm and demonstrate its benefits.
Abstract:Teleoperation is an important technology to enable supervisors to control agricultural robots remotely. However, environmental factors in dense crop rows and limitations in network infrastructure hinder the reliability of data streamed to teleoperators. These issues result in delayed and variable frame rate video feeds that often deviate significantly from the robot's actual viewpoint. We propose a modular learning-based vision pipeline to generate delay-compensated images in real-time for supervisors. Our extensive offline evaluations demonstrate that our method generates more accurate images compared to state-of-the-art approaches in our setting. Additionally, we are one of the few works to evaluate a delay-compensation method in outdoor field environments with complex terrain on data from a real robot in real-time. Additional videos are provided at https://sites.google.com/illinois.edu/comp-teleop.