Abstract:Our work addresses the problem of stochastic long-term dense anticipation. The goal of this task is to predict actions and their durations several minutes into the future based on provided video observations. Anticipation over extended horizons introduces high uncertainty, as a single observation can lead to multiple plausible future outcomes. To address this uncertainty, stochastic models are designed to predict several potential future action sequences. Recent work has further proposed to incorporate uncertainty modelling for observed frames by simultaneously predicting per-frame past and future actions in a unified manner. While such joint modelling of actions is beneficial, it requires long-range temporal capabilities to connect events across distant past and future time points. However, the previous work struggles to achieve such a long-range understanding due to its limited and/or sparse receptive field. To alleviate this issue, we propose a novel MANTA (MAmba for ANTicipation) network. Our model enables effective long-term temporal modelling even for very long sequences while maintaining linear complexity in sequence length. We demonstrate that our approach achieves state-of-the-art results on three datasets - Breakfast, 50Salads, and Assembly101 - while also significantly improving computational and memory efficiency.
Abstract:In this work, we address unsupervised temporal action segmentation, which segments a set of long, untrimmed videos into semantically meaningful segments that are consistent across videos. While recent approaches combine representation learning and clustering in a single step for this task, they do not cope with large variations within temporal segments of the same class. To address this limitation, we propose a novel method, termed Hierarchical Vector Quantization (\ours), that consists of two subsequent vector quantization modules. This results in a hierarchical clustering where the additional subclusters cover the variations within a cluster. We demonstrate that our approach captures the distribution of segment lengths much better than the state of the art. To this end, we introduce a new metric based on the Jensen-Shannon Distance (JSD) for unsupervised temporal action segmentation. We evaluate our approach on three public datasets, namely Breakfast, YouTube Instructional and IKEA ASM. Our approach outperforms the state of the art in terms of F1 score, recall and JSD.
Abstract:Swarm perception refers to the ability of a robot swarm to utilize the perception capabilities of each individual robot, forming a collective understanding of the environment. Their distributed nature enables robot swarms to continuously monitor dynamic environments by maintaining a constant presence throughout the space.In this study, we present a preliminary experiment on the collective tracking of people using a robot swarm. The experiment was conducted in simulation across four different office environments, with swarms of varying sizes. The robots were provided with images sampled from a dataset of real-world office environment pictures.We measured the time distribution required for a robot to detect a person changing location and to propagate this information to increasing fractions of the swarm. The results indicate that robot swarms show significant promise in monitoring dynamic environments.
Abstract:Despite the recent advances in computer vision research, estimating the 3D human pose from single RGB images remains a challenging task, as multiple 3D poses can correspond to the same 2D projection on the image. In this context, depth data could help to disambiguate the 2D information by providing additional constraints about the distance between objects in the scene and the camera. Unfortunately, the acquisition of accurate depth data is limited to indoor spaces and usually is tied to specific depth technologies and devices, thus limiting generalization capabilities. In this paper, we propose a method able to leverage the benefits of depth information without compromising its broader applicability and adaptability in a predominantly RGB-camera-centric landscape. Our approach consists of a heatmap-based 3D pose estimator that, leveraging the paradigm of Privileged Information, is able to hallucinate depth information from the RGB frames given at inference time. More precisely, depth information is used exclusively during training by enforcing our RGB-based hallucination network to learn similar features to a backbone pre-trained only on depth data. This approach proves to be effective even when dealing with limited and small datasets. Experimental results reveal that the paradigm of Privileged Information significantly enhances the model's performance, enabling efficient extraction of depth information by using only RGB images.
Abstract:Long-term action anticipation has become an important task for many applications such as autonomous driving and human-robot interaction. Unlike short-term anticipation, predicting more actions into the future imposes a real challenge with the increasing uncertainty in longer horizons. While there has been a significant progress in predicting more actions into the future, most of the proposed methods address the task in a deterministic setup and ignore the underlying uncertainty. In this paper, we propose a novel Gated Temporal Diffusion (GTD) network that models the uncertainty of both the observation and the future predictions. As generator, we introduce a Gated Anticipation Network (GTAN) to model both observed and unobserved frames of a video in a mutual representation. On the one hand, using a mutual representation for past and future allows us to jointly model ambiguities in the observation and future, while on the other hand GTAN can by design treat the observed and unobserved parts differently and steer the information flow between them. Our model achieves state-of-the-art results on the Breakfast, Assembly101 and 50Salads datasets in both stochastic and deterministic settings. Code: https://github.com/olga-zats/GTDA .
Abstract:Most studies in swarm robotics treat the swarm as an isolated system of interest. We argue that the prevailing view of swarms as self-sufficient, independent systems limits the scope of potential applications for swarm robotics. A robot swarm could act as a support in an heterogeneous system comprising other robots and/or human operators, in particular by quickly providing access to a large amount of data acquired in large unknown environments. Tasks such as target identification & tracking, scouting, or monitoring/surveillance could benefit from this approach.
Abstract:Skeleton-based action segmentation requires recognizing composable actions in untrimmed videos. Current approaches decouple this problem by first extracting local visual features from skeleton sequences and then processing them by a temporal model to classify frame-wise actions. However, their performances remain limited as the visual features cannot sufficiently express composable actions. In this context, we propose Latent Action Composition (LAC), a novel self-supervised framework aiming at learning from synthesized composable motions for skeleton-based action segmentation. LAC is composed of a novel generation module towards synthesizing new sequences. Specifically, we design a linear latent space in the generator to represent primitive motion. New composed motions can be synthesized by simply performing arithmetic operations on latent representations of multiple input skeleton sequences. LAC leverages such synthesized sequences, which have large diversity and complexity, for learning visual representations of skeletons in both sequence and frame spaces via contrastive learning. The resulting visual encoder has a high expressive power and can be effectively transferred onto action segmentation tasks by end-to-end fine-tuning without the need for additional temporal models. We conduct a study focusing on transfer-learning and we show that representations learned from pre-trained LAC outperform the state-of-the-art by a large margin on TSU, Charades, PKU-MMD datasets.
Abstract:Modeling long-term context in videos is crucial for many fine-grained tasks including temporal action segmentation. An interesting question that is still open is how much long-term temporal context is needed for optimal performance. While transformers can model the long-term context of a video, this becomes computationally prohibitive for long videos. Recent works on temporal action segmentation thus combine temporal convolutional networks with self-attentions that are computed only for a local temporal window. While these approaches show good results, their performance is limited by their inability to capture the full context of a video. In this work, we try to answer how much long-term temporal context is required for temporal action segmentation by introducing a transformer-based model that leverages sparse attention to capture the full context of a video. We compare our model with the current state of the art on three datasets for temporal action segmentation, namely 50Salads, Breakfast, and Assembly101. Our experiments show that modeling the full context of a video is necessary to obtain the best performance for temporal action segmentation.
Abstract:Automatic off-line design is an attractive approach to implementing robot swarms. In this approach, a designer specifies a mission for the swarm, and an optimization process generates suitable control software for the individual robots through computer-based simulations. Most relevant literature has focused on effectively transferring control software from simulation to physical robots. For the first time, we investigate (i) whether control software generated via automatic design is transferable across robot platforms and (ii) whether the design methods that generate such control software are themselves transferable. We experiment with two ground mobile platforms with equivalent capabilities. Our measure of transferability is based on the performance drop observed when control software and/or design methods are ported from one platform to another. Results indicate that while the control software generated via automatic design is transferable in some cases, better performance can be achieved when a transferable method is directly applied to the new platform.
Abstract:Self-supervised video representation learning aimed at maximizing similarity between different temporal segments of one video, in order to enforce feature persistence over time. This leads to loss of pertinent information related to temporal relationships, rendering actions such as `enter' and `leave' to be indistinguishable. To mitigate this limitation, we propose Latent Time Navigation (LTN), a time-parameterized contrastive learning strategy that is streamlined to capture fine-grained motions. Specifically, we maximize the representation similarity between different video segments from one video, while maintaining their representations time-aware along a subspace of the latent representation code including an orthogonal basis to represent temporal changes. Our extensive experimental analysis suggests that learning video representations by LTN consistently improves performance of action classification in fine-grained and human-oriented tasks (e.g., on Toyota Smarthome dataset). In addition, we demonstrate that our proposed model, when pre-trained on Kinetics-400, generalizes well onto the unseen real world video benchmark datasets UCF101 and HMDB51, achieving state-of-the-art performance in action recognition.