Abstract:Artificial Intelligence and generative models have revolutionized music creation, with many models leveraging textual or visual prompts for guidance. However, existing image-to-music models are limited to simple images, lacking the capability to generate music from complex digitized artworks. To address this gap, we introduce $\mathcal{A}\textit{rt2}\mathcal{M}\textit{us}$, a novel model designed to create music from digitized artworks or text inputs. $\mathcal{A}\textit{rt2}\mathcal{M}\textit{us}$ extends the AudioLDM~2 architecture, a text-to-audio model, and employs our newly curated datasets, created via ImageBind, which pair digitized artworks with music. Experimental results demonstrate that $\mathcal{A}\textit{rt2}\mathcal{M}\textit{us}$ can generate music that resonates with the input stimuli. These findings suggest promising applications in multimedia art, interactive installations, and AI-driven creative tools.
Abstract:This paper establishes a rigorous connection between circuit representations and tensor factorizations, two seemingly distinct yet fundamentally related areas. By connecting these fields, we highlight a series of opportunities that can benefit both communities. Our work generalizes popular tensor factorizations within the circuit language, and unifies various circuit learning algorithms under a single, generalized hierarchical factorization framework. Specifically, we introduce a modular "Lego block" approach to build tensorized circuit architectures. This, in turn, allows us to systematically construct and explore various circuit and tensor factorization models while maintaining tractability. This connection not only clarifies similarities and differences in existing models, but also enables the development of a comprehensive pipeline for building and optimizing new circuit/tensor factorization architectures. We show the effectiveness of our framework through extensive empirical evaluations, and highlight new research opportunities for tensor factorizations in probabilistic modeling.
Abstract:We present Label Anything, an innovative neural network architecture designed for few-shot semantic segmentation (FSS) that demonstrates remarkable generalizability across multiple classes with minimal examples required per class. Diverging from traditional FSS methods that predominantly rely on masks for annotating support images, Label Anything introduces varied visual prompts -- points, bounding boxes, and masks -- thereby enhancing the framework's versatility and adaptability. Unique to our approach, Label Anything is engineered for end-to-end training across multi-class FSS scenarios, efficiently learning from diverse support set configurations without retraining. This approach enables a "universal" application to various FSS challenges, ranging from $1$-way $1$-shot to complex $N$-way $K$-shot configurations while remaining agnostic to the specific number of class examples. This innovative training strategy reduces computational requirements and substantially improves the model's adaptability and generalization across diverse segmentation tasks. Our comprehensive experimental validation, particularly achieving state-of-the-art results on the COCO-$20^i$ benchmark, underscores Label Anything's robust generalization and flexibility. The source code is publicly available at: https://github.com/pasqualedem/LabelAnything.
Abstract:Computer aided diagnosis systems can provide non-invasive, low-cost tools to support clinicians. These systems have the potential to assist the diagnosis and monitoring of neurodegenerative disorders, in particular Parkinson's disease (PD). Handwriting plays a special role in the context of PD assessment. In this paper, the discriminating power of "dynamically enhanced" static images of handwriting is investigated. The enhanced images are synthetically generated by exploiting simultaneously the static and dynamic properties of handwriting. Specifically, we propose a static representation that embeds dynamic information based on: (i) drawing the points of the samples, instead of linking them, so as to retain temporal/velocity information; and (ii) adding pen-ups for the same purpose. To evaluate the effectiveness of the new handwriting representation, a fair comparison between this approach and state-of-the-art methods based on static and dynamic handwriting is conducted on the same dataset, i.e. PaHaW. The classification workflow employs transfer learning to extract meaningful features from multiple representations of the input data. An ensemble of different classifiers is used to achieve the final predictions. Dynamically enhanced static handwriting is able to outperform the results obtained by using static and dynamic handwriting separately.
Abstract:Signature verification is a critical task in many applications, including forensic science, legal judgments, and financial markets. However, current signature verification systems are often difficult to explain, which can limit their acceptance in these applications. In this paper, we propose a novel explainable offline automatic signature verifier (ASV) to support forensic handwriting examiners. Our ASV is based on a universal background model (UBM) constructed from offline signature images. It allows us to assign a questioned signature to the UBM and to a reference set of known signatures using simple distance measures. This makes it possible to explain the verifier's decision in a way that is understandable to non experts. We evaluated our ASV on publicly available databases and found that it achieves competitive performance with state of the art ASVs, even when challenging 1 versus 1 comparison are considered. Our results demonstrate that it is possible to develop an explainable ASV that is also competitive in terms of performance. We believe that our ASV has the potential to improve the acceptance of signature verification in critical applications such as forensic science and legal judgments.
Abstract:Crowd analysis from drones has attracted increasing attention in recent times due to the ease of use and affordable cost of these devices. However, how this technology can provide a solution to crowd flow detection is still an unexplored research question. To this end, we propose a crowd flow detection method for video sequences shot by a drone. The method is based on a fully-convolutional network that learns to perform crowd clustering in order to detect the centroids of crowd-dense areas and track their movement in consecutive frames. The proposed method proved effective and efficient when tested on the Crowd Counting datasets of the VisDrone challenge, characterized by video sequences rather than still images. The encouraging results show that the proposed method could open up new ways of analyzing high-level crowd behavior from drones.
Abstract:Crowd counting on the drone platform is an interesting topic in computer vision, which brings new challenges such as small object inference, background clutter and wide viewpoint. However, there are few algorithms focusing on crowd counting on the drone-captured data due to the lack of comprehensive datasets. To this end, we collect a large-scale dataset and organize the Vision Meets Drone Crowd Counting Challenge (VisDrone-CC2020) in conjunction with the 16th European Conference on Computer Vision (ECCV 2020) to promote the developments in the related fields. The collected dataset is formed by $3,360$ images, including $2,460$ images for training, and $900$ images for testing. Specifically, we manually annotate persons with points in each video frame. There are $14$ algorithms from $15$ institutes submitted to the VisDrone-CC2020 Challenge. We provide a detailed analysis of the evaluation results and conclude the challenge. More information can be found at the website: \url{http://www.aiskyeye.com/}.
Abstract:Clustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns based on domain knowledge and visual perception is extremely hard. On the other hand, applying traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, in this paper we propose DELIUS: a DEep learning approach to cLustering vIsUal artS. The method uses a pre-trained convolutional network to extract features and then feeds these features into a deep embedded clustering model, where the task of mapping the raw input data to a latent space is jointly optimized with the task of finding a set of cluster centroids in this latent space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. DELIUS can be useful for several tasks related to art analysis, in particular visual link retrieval and historical knowledge discovery in painting datasets.
Abstract:This paper presents our ongoing work towards ArtGraph: an artistic knowledge graph based on WikiArt and DBpedia. Automatic art analysis has seen an ever-increasing interest from the pattern recognition and computer vision community. However, most of the current work is mainly based solely on digitized artwork images, sometimes supplemented with some metadata and textual comments. A knowledge graph that integrates a rich body of information about artworks, artists, painting schools, etc., in a unified structured framework can provide a valuable resource for more powerful information retrieval and knowledge discovery tools in the artistic domain.
Abstract:In this paper, we propose a novel method for mild cognitive impairment detection based on jointly exploiting the complex network and the neural network paradigm. In particular, the method is based on ensembling different brain structural "perspectives" with artificial neural networks. On one hand, these perspectives are obtained with complex network measures tailored to describe the altered brain connectivity. In turn, the brain reconstruction is obtained by combining diffusion-weighted imaging (DWI) data to tractography algorithms. On the other hand, artificial neural networks provide a means to learn a mapping from topological properties of the brain to the presence or absence of cognitive decline. The effectiveness of the method is studied on a well-known benchmark data set in order to evaluate if it can provide an automatic tool to support the early disease diagnosis. Also, the effects of balancing issues are investigated to further assess the reliability of the complex network approach to DWI data.